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Abstract

Pine cones that remain closed and retain seeds until fire causes the cones to open (cone

serotiny) represent a key adaptive trait in a variety of pine species. In lodgepole pine,

there is substantial geographical variation in serotiny across the Rocky Mountain region.

This variation in serotiny has evolved as a result of geographically divergent selection,

with consequences that extend to forest communities and ecosystems. An understanding

of the genetic architecture of this trait is of interest owing to the wide-reaching ecological

consequences of serotiny and also because of the repeated evolution of the trait across the

genus. Here, we present and utilize an inexpensive and time-effective method for

generating population genomic data. The method uses restriction enzymes and PCR

amplification to generate a library of fragments that can be sequenced with a high level

of multiplexing. We obtained data for more than 95 000 single nucleotide polymorphisms

across 98 serotinous and nonserotinous lodgepole pines from three populations. We used

a Bayesian generalized linear model (GLM) to test for an association between genotypic

variation at these loci and serotiny. The probability of serotiny varied by genotype at 11

loci, and the association between genotype and serotiny at these loci was consistent in

each of the three populations of pines. Genetic variation across these 11 loci explained

50% of the phenotypic variation in serotiny. Our results provide a first genome-wide

association map of serotiny in pines and demonstrate an inexpensive and efficient

method for generating population genomic data.
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Introduction

Analysis of the relationship between genetic and pheno-

typic variations has been an area of extensive research for

decades because of the broad significance of understand-

ing the heritability and evolution of traits. Recently,

technological advances have begun to enable such stud-

ies in a broader range of taxa, including systems for

which there is extensive knowledge of the ecological and

evolutionary context of trait variation, but for which few

genomic resources existed (Hudson 2008; Hohenlohe

et al. 2010; Baxter et al. 2011). Various analytical
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approaches exist for finding associations between pheno-

types and underlying genetic variation. In association

mapping, researchers use naturally occurring recombina-

tion and linkage disequilibrium (LD) to map genetic

regions affecting phenotype at a potentially fine genomic

scale. Because association mapping does not require ped-

igrees or artificial crosses, it is feasible to map the genetic

basis of traits in natural populations (Neale & Savolainen

2004; Gupta et al. 2005; Hirschhorn & Daly 2005). How-

ever, because genome-wide association mapping

requires large sets of densely spaced genetic markers, its

application has been limited by a paucity of genomic

resources available for many organisms (Stinchcombe &

Hoekstra 2007). Recently, various enrichment strategies

have been developed that target a subset of the genome
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for DNA sequencing, even without previous genomic

resources for the taxon. These enrichment methods, cou-

pled with high levels of multiplexing of individuals, lead

to DNA libraries that can be sequenced with sufficient

coverage to generate population genomic data at a frac-

tion of the previously required time and cost (Craig et al.

2008; Gompert et al. 2010; Hohenlohe et al. 2010; Andolf-

atto et al. 2011; Cosart et al. 2011; Elshire et al. 2011).

Conifers are well suited for association mapping

because of their large, relatively unstructured popula-

tions, high levels of outcrossing and nucleotide diver-

sity, and rapidly decaying LD (Neale & Savolainen

2004; González-Martı́nez et al. 2006; Neale 2007). The

large physical size of conifer genomes and high costs of

genotyping large numbers of individuals have limited

association mapping to taxa with substantially devel-

oped genomic resources. To date, association studies in

conifers have used gene-based analyses where SNPs

were assayed across genes that had been characterized

in expressed sequence tag (EST) sequencing projects or

candidate-gene-based analyses where candidate genes

were available for phenotypes of interest (Neale 2007).

Such studies of complex traits in loblolly pine (Pinus

taeda; González-Martı́nez et al. 2007; Eckert et al., 2010;

Quesada et al. 2010), Douglas-fir (Pseudotsuga menziesii ;

Eckert et al. 2009a, c; Cumbie et al. 2011) and Sitka

spruce (Picea sitchensis; Holliday et al. 2010) have shown

the promise of association approaches for detecting the

genetic architecture of phenotypes of commercial or eco-

logical interest in conifers. These studies have relied on

relatively expensive and time-consuming SNP assay

development and scoring, and substantial previous

sequencing of expressed genes (González-Martı́nez et al.

2007, 2008; Eckert et al. 2009b). While such approaches

are useful, genome-wide association mapping has the

potential to identify a more complete genetic architec-

ture and to enable mapping in cases where candidate

genes for the phenotype of interest are unavailable. The

ability to rapidly generate genome-wide sequence data

for many individuals from any taxon should soon allow

association genetic approaches to be applied more

widely in conifers. Such studies will be important for

tree breeding programmes and understanding many

aspects of the ecological genetics of conifers.

Lodgepole pine (Pinus contorta) is one of the most

commercially and ecologically important plants in the

Rocky Mountain region, where it occurs in vast uniform

stands and constitutes the structural basis (a foundation

species) of montane forest ecosystems. Substantial phe-

notypic variation has evolved among populations in

response to diverse selection pressures, including varia-

tion in seed predator communities (Benkman et al.

2001, 2003; Benkman & Siepielski 2004) and fire regime

(Lotan 1975; Arno 1980). Many lodgepole pines hold
seeds for years in serotinous cones, releasing millions of

seeds only after fire, resulting in rapid and dense recol-

onization of burned regions (Turner et al. 1994). There

is substantial geographical variation in the prevalence

of serotiny with the percentage of serotinous trees in

stands ranging from zero to nearly 100%, and much of

this variation is related to geographically variable natu-

ral selection arising from fire frequency and seed preda-

tion (Lotan 1975; Benkman & Siepielski 2004; Benkman

et al. 2008). In addition, prefire serotiny levels affect

stand density in regenerating forests, the cover and

density of understory plants, and species richness in

these communities (Turner et al. 1997, 2003). Thus,

through its effects on stand regeneration and commu-

nity structure, serotiny is a trait with extended commu-

nity and ecosystem level consequences (Wymore et al.

2011).

Serotiny is also a trait that is expressed in at least

22 different species across the genus Pinus and

appears to have evolved independently multiple times

(Grotkopp et al. 2004). Studies of the genetic control of

serotiny in lodgepole pine are limited to a single prog-

eny test (Rudolph et al. 1959) and to observations of

cone type frequencies in natural populations (Teich

1970), where limited evidence was consistent with one

or a small number of loci controlling the trait.

Whereas serotiny is often considered a binary pheno-

type under strong genetic control (most trees tend to

have mostly serotinous or nonserotinous cones), indi-

viduals of intermediate cone type do occur at low

frequency. Consequently, the architecture of this trait

could be more complex than previously thought.

Genome-wide association mapping has the potential to

more precisely describe the number of genetic regions

associated with the trait, as well as eventually facilitat-

ing the identification of causal mutations within

mapped regions. Knowledge of the genetic architecture

of serotiny would aid our understanding of how

genetic variation and natural selection have shaped

adaptive phenotypic variation within a single species

and our understanding of the manner in which genetic

variation in this trait underlies community and ecosys-

tem level phenomena.

Here, we use population genomic data to analyse

genetic associations with serotiny across three

populations of lodgepole pine. We first quantify genetic

variation in the sampled pines to assess the suitability of

the sequence data for detecting and characterizing pop-

ulation structure. We then test for associations between

genetic variation and serotiny for tens of thousands of

genetic regions using a Bayesian association mapping

model. Importantly, our models treat genotypes as

unknown parameters to be estimated and incorporate

stochastic variation in sequence coverage that is common
� 2012 Blackwell Publishing Ltd
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in next-generation sequencing data. We describe a

laboratory method for genomic enrichment and high-

throughput, multiplexed DNA sequencing (similar to

CRoPS, GBS and other recently published methods; van

Orsouw et al. 2007; Gompert et al. 2010; Andolfatto

et al. 2011; Elshire et al. 2011). We generated individually

bar-coded sequences for 98 serotinous and nonserotinous

lodgepole pines from three populations in the Rocky

Mountains of Wyoming. We focus on three populations

that have nearly identical, intermediate frequencies of

serotinous trees so that allele frequency differences

between populations do not exhibit spurious associa-

tions with phenotypic variation. Our results reveal a

number of genetic regions with polymorphisms associ-

ated with serotiny and cast doubt on the previous

conception of a very simple genetic architecture for the

trait. These results also indicate the promise of our

laboratory method for rapid, cost-effective and highly

multiplexed sequencing of thousands of unique genetic

regions and further establish the feasibility of popula-

tion genomics in taxa with limited genomic resources.
Materials and methods

Genetic material and phenotype

We obtained DNA from 98 lodgepole pines sampled

from three mountain ranges in Wyoming: Wind River

Range (n ¼ 20), Absaroka Range, (n ¼ 36) and Laramie

Range (Vedauwoo; n ¼ 42). To avoid uncertainty in

phenotype ascertainment, we avoided sampling trees

with both types of cones and were able to categorize

serotiny as a binary phenotype. In each of the three pop-

ulations, 44–49% of the sampled trees had serotinous

cones. Across populations, we sampled needles and iso-

lated DNA from 48 trees that had serotinous cones and

50 trees with nonserotinous cones. Importantly, the pro-

portion of sampled trees in each population with seroti-

nous cones was nearly identical, meaning that

population structure is not a confounding issue for asso-

ciation analyses. All sampled trees were more than

50 years old (determined by known size–age relation-

ship), so that absence of serotinous cones on trees was

not because of young age (Lotan 1975; Critchfield 1980).

DNA was extracted from 50 mg of dessicated needles

using a CTAB-based method (Doyle 1991). DNA quality

and concentration was assessed with agarose electro-

phoresis and with a NanoDrop spectrophotometer

(Thermo Fisher, Inc.).
Illumina sequencing of restriction fragment libraries

We used a simple and cost-effective laboratory method

for genomic enrichment prior to high-throughput
� 2012 Blackwell Publishing Ltd
sequencing, in this case with an Illumina GAIIx sequen-

cer. Previously, we used a similar protocol with a 454

instrument (Gompert et al. 2010). Especially for large

genomes, template reduction is necessary to ensure suf-

ficient coverage, and we accomplish this with restriction

enzyme digestion and size selection on agarose gels.

Because this protocol also includes ligating bar codes to

the DNA from each individual, it is suitable for studies

of large numbers of individuals, as is typical in studies

of molecular ecology, association mapping, and popula-

tion genomics. The protocol involves similar steps as in

AFLP protocols (Vos et al. 1995) and can be easily mod-

ified to alter the number of template regions produced

for sequencing. It begins with digestion of template

DNA with two restriction enzymes and is followed by

PCR amplification and size selection on agarose gels to

produce a pool of fragments for sequencing. By incor-

porating Illumina sequencing adaptors and individual

10-base bar codes into each fragment, the products are

suitable for pooling and highly multiplexed sequencing.

In addition, placing the bar code inside the sequenced

fragments removes the need for using the second Illu-

mina ‘indexing’ primer.

Restriction digestion and adaptor-ligation were carried

out simultaneously on 0.5 lg of genomic DNA using the

restriction endonucleases EcoRI and MseI (NEB, Inc.).

EcoRI is a methylation-sensitive enzyme, so that methy-

lated sites in the genome (including noncoding DNA

and repetitive elements) may be preferentially excluded

from sequencing libraries. The adaptor sequences consist

of the Illumina adaptor, a 10-bp individual bar code on

one side of the fragment, and additional bases to match

the restriction enzyme cut sites (EcoRI side: 5¢-CTCTTTC

CCTACACGACGCTCTTCCGATCT-3¢ + 10-bp bar code

+ C; MseI side: 5¢-GCAGAAGACGGCATACGAGCTCTT

CCGATCT-3¢ + G; Fig. 1; the full protocol with all oligo-

nucleotide sequences is available from Dryad-10.5061/

dryad.m2271pf1). The 10-base bar codes used in this

study came from a library of 151 unique sequences (454

Life Sciences Corp 2009), each of which differs by four

bases from any other sequence in the library. This allows

for recognition of sequencing errors in the bar codes and

the correction of such errors during the parsing of bar

codes. Adaptor sequences and their reverse comple-

ments were annealed by incubating at 95 sC for 5 min

and slow cooling to room temperature. The adaptors

were ligated to digested fragments using T4 DNA ligase

(NEB, Inc.). Restriction and ligation were accomplished

simultaneously in 11 lL volumes that were incubated

for 18 h at 38 sC. After incubation, these reactions were

diluted with 150 lL 0.1· TE buffer. We then PCR ampli-

fied these fragments using the Illumina PCR primers (1,

5¢-AATGATACGGCGACCACCGAGATCTACACTCTTT

CCCTACACGACGCTCTTCCGATCT-3¢; 2, 5¢-CAAGCA



5’ GAATTCNNNNNNNNNNNNNNNNNNNNNNTTAA 3’
3’ CTTAAGNNNNNNNNNNNNNNNNNNNNNNAATT 5’

5’ AATTCNNNNNNNNNNNNNNNNNNNNNNT   3’
3’     GNNNNNNNNNNNNNNNNNNNNNNAAT 5’

2. Ligate adaptors to fragments.  Adaptors include adaptor sequence, barcode, cutsite, and protector base
(adaptors in color;  EcoRI on left,  Mse1 on right).

3.  Amplify fragments with Illumina PCR primers.

5’ AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT 3’

4.  Gel purify PCR product in the desired size range (300-400bp).

ATCAGACACGCAATTCNNN...NNNTTAC AGATCGGAAGAGCTCGTATGCCGTCTTCTGCTTG

ACACTCTTTCCCTACACGACGCTCTTCCGATCT

Illumina sequencing primer

Illumina PCR primer I (Illpcr1)

Illumina PCR primer II (Illpcr2)

108 bp sequenced fragments (in rare cases, the sequences might extend to Mse1 end and adaptor)
1st 10 bp are barcode, followed by 6 invariant bp and 92 potentially variable sites.

***Note only fragments with the EcoRI adaptor on one side and the Mse1 adaptor on the other will be sequenced due to the bridge-PCR method in Illumina sequencing.   

Mse1EcoRI1.  Digest double-
stranded DNA with 
EcoRI and Mse1.

5. Illumina sequencing. 

3’ TCTAGCCTTCTCGAGCATACGGCAGAAGACGAAC 5’

5‘ CTCTTTCCCTACACGACGCTCTTCCGATCT ATCAGACACGC AATTCNNNNNNNNNTTA AGATCGGAAGAGCTCGTATGCCGTCTTCTGCTTG 3’
3’ TGTGAGAAAGGGATGTGCTGCGAGAAGGCTAGATAGTCTGTGC TTAAGNNNNNNNNNAATGTCTAGCCTTCTCGAGCATACGGCAGAAGACG 5’G

C

ACACTCTTTCCCTACACGACGCTCTTCCGATCT

Illumina sequencing primer

Fig. 1 A schematic illustration of the laboratory protocol used here to prepare highly multiplexed libraries for Illumina sequencing.
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GAAGACGGCATACGAGCTCTTCCGATCT-3¢) (Illumina,

Inc.) that match the sequences of the ligated adaptors.

Amplification reactions contained 6 lL of the diluted

restriction–ligation products, 21.7 lL 1· PCR buffer,

0.3 lL Iproof high-fidelity polymerase at 4 Units/lL

(Bio-Rad, Inc.) and 2 lL of a 5 lM mix of forward and

reverse Illumina PCR primers. PCR conditions included

20 PCR cycles (94 sC for 30 s, 60 sC for 30 s, 72 sC for

2 min) and a final extension at 60 sC for 30 min.

The products of these PCRs were combined into a

single, homogenized pool and subjected to electropho-

resis on 2.5% agarose gels at 85 V for 150 min. A vol-

ume of 80 lL of the pooled library was placed in each

of 24 lanes, and DNA in the region of 300–400 bp

(based on comparison to a 1-Kbp DNA ladder) was

excised from the gel and purified with QiaQuick gel

extraction kits (Qiagen, Inc.). Altering the size and loca-

tion of the region of DNA excised from the gel during

this step can alter the number of genetic regions in the

sequencing library, which would affect the coverage

depth obtained from sequencing. The quality and con-

centration of libraries was assessed with a NanoDrop

spectrophotometer and quantitative electrophoresis in a

Bioanalyzer (Agilent, Inc.). Suitability of libraries for

sequencing was verified with real-time, quantitative

PCR at NCGR (National Center for Genome Resources,

Santa Fe, NM, USA). Sequencing was accomplished on

a single lane run on an Illumina GAIIx device at

NCGR.
Sequence assembly and data analysis

All reads from the Illumina GAIIx were 108 nucleotides

in length and began with the 10-bp bar code at the

EcoRI end of our amplified fragments and the six bases

corresponding to the EcoRI cut site, followed by 92

bases of informative genomic sequence. Prior to further

processing, we trimmed the bar codes and the six fol-

lowing nucleotides from each fragment. In this initial

processing, we corrected bar codes in the Illumina reads

that differed by a single base from the reference bar

code. As all of the bar codes differ by a minimum of

four bases, this unambiguously and conservatively cor-

rected a small number of reads containing sequencing

errors in the bar code. During this parsing of bar codes,

we added the correct individual identification for each

tree to the identification line associated with each

sequence in the fastq format files.

We first executed a de novo assembly based on a sub-

set of 20 million reads using SEQMAN NGEN 2.0 (DNAstar,

Inc.). We then used the consensus sequences of the

highest quality contigs that had a minimum coverage

depth of 7·, a minimum length of 88 bases and a maxi-

mum length of 96 bases as reference sequences on to

which we assembled the entire set of sequences.

Repeat-rich regions often assemble into long contigs,

and the removal of such contigs from the reference

improved the quality of the assembled contigs consider-

ably. A template-guided assembly based on this
� 2012 Blackwell Publishing Ltd
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reference was then executed in SEQMAN NGEN 3.0 (DNAs-

tar, Inc.). For both the de novo and reference-based

assemblies, we used a gap penalty of 50, minimum

match percentage of 90%, match size of 50 bp, mismatch

penalty of 15 and used the repeat handling option. For

the reference-based assembly, reads that aligned to mul-

tiple reference contigs were discarded from the assem-

bly to limit the representation of repetitive DNA in the

final assembly. The full parameters used in assemblies

are available from the authors by request.

We used custom Perl scripts along with bcftools and

samtools (Li et al. 2009) to call variant sites in the assem-

bled contigs. samtools processes input BAM files (a com-

pressed file format for storing assembly data), computes

the probability of the data given each possible genotype

and stores the probabilities in the BCF format. bcftools

then executes the calling of variant sites based on a

Bayesian model that accounts for uncertainty in the data.

We considered only SNPs and disregarded insertions

and deletions. We used the full prior in bcftools, only

considered SNPs where reads were present for at least

30% of the individuals, and required the probability of

the data to be <0.05 under the assumption that all sam-

ples were homozygous for the reference allele. The data

from the called variant sites were parsed and placed in

files containing information on the haplotype counts for

each individual at each genetic region, the sequence

information on each SNP by haplotype for each individ-

ual at each genetic region, and a file containing the num-

ber of reads for each SNP in each individual. We then

removed all genetic regions where individuals appeared

to have more than two haplotypes. To further ensure that

all loci behaved as Mendelian units, we discarded any

variable site where the observed allele counts from

apparent heterozygous individuals were very unlikely

given a binomial distribution with p ¼ 0.5. Specifically,

we discarded a locus if P(Y £ y|p ¼ 0.5, n) £ 0.05, where

y is the count of the less frequently observed allele.

We aligned the consensus sequences containing SNPs

to 322 000 contig and singleton sequences from a Pinus

contorta whole transcriptome sequencing project (Parch-

man et al. 2010) to assess the proportion of these

sequences that might represent transcribed regions. We

executed this alignment using a template-guided assem-

bly in SEQMAN NGEN 3.0 with the same parameter settings

as used for the assemblies described above.

We used a Bayesian model to estimate population

allele frequencies and genotypic states for each called

SNP based on the observed sequence data (Gompert

et al. 2012). This model treats genotypes at each locus

and the allele frequencies as unknown parameters and

assumes that sequences are sampled stochastically with

variable coverage per nucleotide. Thus, the model

accounts for uncertainty in coverage across individuals,
� 2012 Blackwell Publishing Ltd
loci and homologous gene copies inherent to next-genera-

tion sequencing projects and allows the use of variable or

stochastic sequencing coverage at all levels. A detailed

description of this model is given by Gompert et al.

(2012). We obtained posterior probability distributions

for allele frequencies and genotypic state using Markov

chain Monte Carlo (MCMC). We ran 20 000 MCMC steps

where parameter values at every fourth step were

retained. We used principal component analysis (PCA) to

summarize genetic variation among the three popula-

tions. We treated the probability of two of three genotypic

states (the heterozygote and one homozygote) at each

locus as variables for PCA (the third genotypic probabil-

ity is redundant, as these probabilities must sum to one).

We conducted PCA in R using the prcomp function on

the centred variables (R Development Core Team 2011).

We used a hierarchical Bayesian specification of the

F model to estimate genetic differentiation among popu-

lations (details of this model are provided in Gompert

et al. 2012). The F model is commonly used to quantify

population structure and yields a parameter equivalent

to FST under several neutral population genetic models,

including the equilibrium infinite-island model and a

model of divergence from a common ancestral popula-

tion without gene flow (Balding & Nichols 1995; Rannala

& Hartigan 1996; Nicholson et al. 2002; Balding 2003;

Falush et al. 2003). The F model allows for uncertainty in

FST because of evolutionary and statistical sampling and

treats FST as an evolutionary parameter rather than a

statistical summary of allele frequencies. Our implemen-

tation of the F model assumes Hardy–Weinberg and link-

age equilibrium within populations and that sequences

do not contain errors, but allows for uncertainty in geno-

typic state because of variable and limited sequence cov-

erage (Gompert et al. 2012). We used MCMC to obtain

genome-level estimates of FST for each pair of popula-

tions. Chains were iterated for 25 000 steps, and parame-

ter values were recorded every fifth step.

We tested for an association between each biallelic

marker locus and serotiny using a simple Bayesian

linear model. We allowed the effect of each marker

genotype to vary independently (i.e. we did not assume

a simple additive model for allelic effects). Specifically,

we assumed the observed phenotypic value (0 ¼ nonse-

rotinous, 1 ¼ serotinous) for individual i (yi) follows a

Bernoulli distribution with p ¼ pi and that the probabil-

ity of serotiny for individual i (pi) can be described by

the linear model,

pi ¼
X2

k¼0

bkjd
k
xij
; ð1Þ

where xij 2 {0,1,2} is the genotype of individual i for

locus j, and dn0

n is Kronecker’s delta (i.e. dn0

n ¼ 1 if n ¼
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n¢ and 0 otherwise). xij ¼ 1 denotes the heterozygous

genotype for locus j, whereas xij ¼ 0 and xij ¼ 2 denote

alternative homozygous genotypes. We placed indepen-

dent Beta priors on each of the regression coefficients,
bkj � Betaða; bÞ ð2Þ

where a ¼ 1.92 and b ¼ 2.08 were specified to provide a

mildly informative and conservative prior with an

expected value (a/(a + b) ¼ 0.48) equal to the fraction of

serotinous pines in the sample.

Because of generally low sequence coverage, we mod-

elled genotypes as unknown parameters, which we esti-

mated coincident with the Bayesian association

mapping analysis. Genotypic states were estimated

using the allele frequency model described earlier. We

used MCMC to estimate marginal posterior probability

distributions for regression coefficients (b) and genotype

probabilities. Source code in C for this analysis is avail-

able from Dryad (10.5061/dryad.m2271pf1). We con-

ducted single-locus tests of association for all loci in a

pooled analysis of all 98 trees and also separately

within each of the three populations. We obtained

10 000 MCMC samples from the posterior distribution

for each parameter. We classified loci as associated with

serotiny, and thus as marker tags for candidate genetic

regions containing functional variants that control sero-

tiny, if the lower 0.05 quantile of the posterior distribu-

tion for any of the three regression coefficients was

>0.48 (the frequency of serotiny in the sample), or if the

upper 0.95 quantile was <0.48. The odds ratios for a

locus were estimated as the ratio of the probability of

serotiny among alternative genotypes. We executed

BLAST searches against NCBI’s nr repository with the

sequences containing loci that had significant associa-

tions with serotiny.

We estimated Burrow’s composite measure of Hardy–

Weinberg and linkage disequillibrium (D) between each

of the 11 loci statistically associated with serotiny (see

Results) and a haphazard set of 19 additional loci (Weir

1979). We estimated D to determine whether the candi-

date loci probably represent one or multiple genetic

regions and to identify loci with severe deviation from

Hardy–Weinberg equilibrium. The D metric does not

require phased data and does not assume Hardy–Wein-

berg equilibrium at either locus, but instead provides a

joint measure of intralocus and interlocus disequilibria

(Weir 1979). Because of uncertainty in genotypic state

for each individual, we used a Monte Carlo algorithm

to sample genotypes for individuals and calculated the

composite disequilibrium measure (Djj¢) for each locus

pair. We sampled genotypes for each individual and

locus according to the estimated genotype probabilities

obtained previously. We then obtained our estimate for
Djj¢ by taking the mean of the calculated d values over

1000 repeated samples of individual genotypes. We

used a simple permutation test to determine whether

the extent of LD among the candidate loci exceeded LD

among the noncandidate loci.

We fit GLMs for the association between genotypes at

the 11 candidate loci and serotiny to obtain likelihood-

based Monte Carlo estimates of the proportion of phe-

notypic variation explained by the genetic data. Our

primary interest was to determine how much of the

variation in serotiny could be explained by a full model

that included all 11 candidate loci, but we first fit GLMs

including individual loci for comparison. We assumed

the phenotypic data were described by a binomial prob-

ability distribution and used a logit link function. As

above, we iteratively sampled genotypes for each indi-

vidual and locus according to the estimated genotype

probabilities to account for genotype uncertainty. For

each sampled set of genotypes, we fit a GLM that

included only an intercept (null model), an intercept

and genotype for one locus (single-locus model), or an

intercept and genotypes for the 11 candidate loci (full

model) using the iteratively reweighted least squares

algorithm implemented in the R function glm. We

obtained Monte Carlo estimates of the Akaike informa-

tion criterion (AIC) and the coefficient of determination

(r2) for each sample by taking the mean over 1000 sam-

pled sets of genotypes. The coefficient of determination

can be interpreted as the proportion of phenotypic vari-

ation explained by the genetic data included in each

model. We repeated this procedure after randomizing

phenotypes (1000 repeated samples of genotypes for

each of 10 randomizations of phenotypes) to obtain the

expected distribution of AIC and r2 under the null

hypothesis of no association between genotype and

phenotype.

To further examine the contribution of different num-

bers and subsets of loci, we conducted several addi-

tional analyses using the same Monte Carlo and glm

approaches described above. We used the bestglm rou-

tine in R to analyse all possible combinations of loci

included in general linear models predicting serotiny

and to systematically choose the best subset of models.

bestglm uses a simple exhaustive search algorithm

across models including all possible numbers and com-

binations of parameters to find the models with the

smallest sum of squares or deviances and evaluates

models based on AIC. We ran 1000 iterations of bestglm

using the Monte Carlo sampled genotypes and tracked

the loci that were included in the best overall model for

each iteration. Likewise, to evaluate the effect of adding

additional loci to these GLMs, we calculated r2 and AIC

for a one locus model and then sequentially for each

model with an additional locus added (up to the full
� 2012 Blackwell Publishing Ltd
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model with 11 loci). For these analyses, we added loci

in order of their r2 values from the single-locus models

described above.
0
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Results

A total of 36 675 491 sequences were generated on an

Illumina GAIIx platform. After trimming off bar codes

and the preceding six bases associated with the EcoRI

cut site, 30 719 069 reads averaging 92 bases in length

were retained for analysis. An average of 313 459

sequences were generated per bar-coded individual. De

novo assembly of a subset of 20 million reads placed

3 783 249 reads into 148 956 contigs containing a mini-

mum of seven reads, for an average coverage depth

across all individuals of 25·. We discarded contigs

longer than 96 bases and shorter than 88 bases, as well

as those with insufficient coverage depth, and concate-

nated the consensus sequences from these contigs into

an artificial reference template. The template-guided

assembly of all 30 719 069 reads then placed 9 395 072

reads onto the reference sequences and resulted in an

average coverage depth of 66· per genetic region across

all individuals (0.7· per individual). After processing

the BAM files created from these assembly and calling

variants using bcftools in samtools, 97 616 variant sites

spanning 45 529 contigs were retained for use in the fol-

lowing analyses. A total of 3594 of the consensus

sequences representing these contigs aligned to Pinus

contorta transcriptomic sequences, indicating that at

least 6% of the data probably represent transcribed

regions.

The minor allele frequency (MAF) varied consider-

ably among loci (Fig. 2). The sequence data included

numerous low-frequency variants, but the majority of

loci were quite variable. The first two principal compo-
Minor allele frequency
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Fig. 2 The distribution of minor allele frequencies for the

97 616 loci used in this study.

� 2012 Blackwell Publishing Ltd
nents explained 8% (PC1) and 7% (PC2) of the varia-

tion in estimated genotypic state probabilities across all

97 616 loci. The first two principal components suggest

a lack of differentiation between serotinous and nonse-

rotinous trees within populations, but a geographical

signal of isolation by distance (Fig. 3; Novembre & Ste-

phens 2008). We note that because the PCA was based

on genotype probabilities, and because of features of

the model used to generate FST estimates among popu-

lations, the per cent variation explained in the PCA is

not necessarily proportional to FST among populations

(McVean 2009). Pairwise estimates of genome-level

genetic differentiation (FST) between the sampled popu-

lations were very low but nonzero, and population dif-

ferentiation exceeded the differentiation between

serotinous and nonserotinous pines (Table 2).

We detected 11 loci statistically associated with varia-

tion in serotiny. Loci with low sequencing coverage

contain less information and are thus unlikely to have

significant parameter estimates in the Bayesian associa-

tion analyses. The loci exhibiting significant associations

had relatively high coverage depths (mean of five reads

per individual per locus; Table 1), and there is compar-

atively little uncertainty in genotypes for these loci. The

highest odds ratio (ratio of the probability of serotiny
−30 −20 −10 0 10 20 30

−
10

0
1

PC 1

Fig. 3 A plot of the first two principal components of genetic

variation among individuals from three lodgepole pine popula-

tions clearly distinguishes individuals from different sampling

localities, but substantial overlap of serotinous and nonserotin-

ous trees in each. The first two principal components account

for 8% (PC 1) and 7% (PC 2) of the variation in genotype

probabilities across the 97 616 loci. Populations are indicated

by shape (triangles, Absaroka Range; squares, Wind River

Range; and circles, Laramie Range–Vedauwoo), and filled sym-

bols represent serotinous trees and open symbols represent

nonserotinous trees.
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for a pair of genotypes) for the probability of observing

a serotinous tree among genotypes was 3.697, and the

probability of serotiny conditional on genotype ranged

from 0.19 to 0.78 (Table 1). One of the SNPs most

clearly associated with serotiny was in locus 1853

(Table 1). Individuals with one of the homozygous

genotypes only had an 18% chance of being serotinous,

whereas heterozygous individuals had a 71% chance of

being serotinous. Consistent with expectations from the

Hardy–Weinberg law, individuals homozygous for the

less frequent allele at each locus were rare in the sam-

ple. Thus, our estimates of the probability of serotiny

for the rare genotype were associated with considerable

uncertainty. The same was occasionally true for other

genotypes, but for each of the 11 loci, the probability of

serotiny for at least one genotype deviated significantly

from the sample frequency of serotiny. Analyses con-

ducted within individual populations implicated a

smaller and mostly nonoverlapping set of loci associ-

ated with serotiny. That the same loci were not repeat-

edly detected in the within population association

analyses is not surprising given the small number of

individuals in these populations and the very low levels

of LD characteristic of pine populations. While detect-

ing similar loci exhibiting associations would be

expected in populations with high levels of LD (such as

mapping populations), this is less likely for populations

of pines where LD is known to decay rapidly (Brown

et al. 2004; Krutovsky & Neale 2005; Heuertz et al.

2006). However, some of the same loci were associated

with serotiny within individual populations and in the

whole sample, and parameter estimates for these 11

candidate loci were highly correlated across the three

pine populations (Fig. 4A–C), indicating the loci have

similar relationships with serotiny and providing some

evidence for a shared genetic architecture.

Of the associated loci that had BLAST matches to

NCBI’s nr repository, nearly all were to large sequences

identified as random Pinus taeda clones (Table 1). One

sequence (locus 1853) had high sequence similarity to a

P. contorta chloroplast accession (Table 1). However,

many individuals were clearly heterozygous at this

locus, indicating it is a nuclear copy of chloroplast

DNA, which is common in plants (Ayliffe & Timmis

1992; Yuan et al. 2002; Huang et al. 2003).

Intra- and interlocus disequilibria for the 11 candidate

loci were weak to nonexistent (Fig. 4D). The mean

absolute value of |D| between candidate loci was 0.008

(minimum < 0.001, maximum ¼ 0.026). Moreover, the

magnitude of D between candidate loci was not signifi-

cantly greater than between pairs of 19 arbitrarily cho-

sen loci (|Dcandidate| ) |Dnoncandidate| ¼ )0.0009, P ¼
0.7421). Finally, none of the candidate loci mapped to

the same sequence read. In addition, most of the 11 loci
� 2012 Blackwell Publishing Ltd
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Fig. 4 Three panels contain plots of parameter estimates for the same 11 loci that were significantly associated with serotiny when

all individuals across populations were used in the combined analysis. Each plot displays parameter estimates from Bayesian associa-

tion mapping conducted within individual populations and presents the strength of association of parameter estimates from trees in

different populations. The lower right panel represents the strength of correlations between allele frequencies of the 11 loci signifi-

cantly associated with serotiny (bottom left quadrant), between the associated loci and 19 arbitrarily selected loci (upper left quad-

rant), and between pairs of the 19 arbitrarily selected loci (upper right quadrant). The axes on this plot correspond to loci used in

pairwise linkage disequilibrium estimation in the above order.
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had best BLAST matches to large arbitrary P. taeda clones

of unknown function and location, and each locus

matched a different and unique sequence.

GLMs that included single candidate locus effects

had higher probabilities relative to the null model, con-

sistent with the single-locus Bayesian association map-

ping results (AICnull ) AICsingle: mean across 11 loci ¼
4.5, range ¼ 3.1–7.0). The proportion of phenotypic vari-

ation explained by genetic variation at each candidate

locus ranged from 0.04 to 0.08 (mean ¼ 0.06). Con-

versely, when we randomized phenotypes, little varia-

tion in serotiny was explained by genetic variation at

individual loci and the single-locus models were no

more probable than the null model (AICnull ) AICsingle:

mean across 11 loci ¼ )1.3, range ¼ )2.0 – )0.5). The

full model that included genotype effects for all 11 can-

didate loci was preferred over both the null model and

single-locus models (AICnull ) AICfull ¼ 32.2), and this

model explained 50% of the variation in serotiny. A

moderate proportion of variance in serotiny could also
� 2012 Blackwell Publishing Ltd
be explained by the full model when phenotypes were

randomized (r2 ¼ 0.17). This is perhaps not surprising

as the full model contains a substantial number of

parameters relative to the number of individuals. How-

ever, after considering the number of parameters, the

full model with randomized phenotypes was clearly

inferior to the null model (AICnull ) AICfull ¼ )13.1).

Additionally, the proportion of variation in serotiny

explained by the 11 locus model exceeds that explained

by the 11 locus model with permuted phenotypes by

0.33 (i.e. most of the variation explained by the full

model is not simply a product of the number of param-

eters included in the model).

Selection among GLMs with all possible combinations

of 11 loci indicated that the best models contained more

than seven loci. Models with fewer than five loci were

consistently ranked lowest. Each locus was included at

least 43% of the time in the best model across 1000 iter-

ations of the model selection procedure, while one locus

(10) was included in the best model nearly every time.
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Consequently, there was little basis for excluding loci

from the full model, and all loci appeared to contain

some information. In the sequential addition of loci to

GLMs, r2 continued to increase, and AIC continued to

decrease, indicating improvement in the quality and

explanatory power of these models as more loci were

included (Fig. 5). These results provide further support

that the models with more loci explain more variation

in serotiny, and that multiple genetic regions are associ-

ated with the trait.
Discussion

This genome-wide association study provides an initial

characterization of the genetic architecture of serotiny

and suggests that the inheritance of serotiny is more

complex than the one gene, two-allele scenario sug-

gested previously (Rudolph et al. 1959; Teich 1970) and

widely repeated in the ecological literature (Wymore

et al. 2011). Remarkably, with only 98 individuals,

strong statistical associations were found between sero-

tiny and genotypes at 11 loci, and together these 11 loci

can account for nearly 50% of the phenotypic variation

in the sample. Linear model analyses indicated that

each of the loci contribute to serotiny, and models con-

taining all loci explained substantially more phenotypic

variation than those containing subsets of loci (even

when penalized for the increased number of parameters

in the model, as indicated by AIC) (Fig. 5). The percent-

age of variation explained by associated loci, individu-

ally and combined, is in the range of that commonly
reported in gene-based association mapping of quantita-

tive traits in other conifers (González-Martı́nez et al.

2007; Eckert et al. 2009a; Holliday et al. 2010; Quesada

et al. 2010). Furthermore, the genotype parameter esti-

mates for these 11 loci were highly correlated in the

three different populations (Fig. 4), indicating a similar

genetic architecture of serotiny in different populations

and strengthening our confidence that these loci tag

genetic regions linked with causal variants. A shared

genetic architecture is perhaps not surprising given the

low levels of genetic differentiation among the sampled

populations. LD among the 11 candidate loci was low

to nonexistent and quite similar to LD among other

arbitrarily chosen loci. These results suggest that the 11

loci tag genetic regions in LD with multiple, indepen-

dent functional variants. A polygenic basis for serotiny

is also supported by the existence of trees with interme-

diate levels of serotiny in natural populations.

These initial findings are based on relatively low

sequence coverage for unmapped nucleotide polymor-

phisms in a sample of only 98 trees. Additional

sequencing of these individuals would increase the pre-

cision of parameter estimates and might implicate addi-

tional (or fewer) loci as associated with serotiny or lead

to the identification of multiple SNPs as nonindepen-

dent (i.e. in LD). Likewise, sampling a larger number of

individuals would lead to more precise estimates of

phenotypic effects of genotypic variation and a larger

difference between the full and null models. At present,

a null model that includes genotypes for all 11 loci

explains a substantial fraction of the variation in ran-

domized phenotypes (r2 ¼ 0.17); with a larger sample

of trees, this fraction of variation explained in the null

model would drop. Finally, the current description of

the genetic architecture of serotiny is based on contrasts

between extreme individuals that expressed serotiny or

did not. However, serotiny in cones could also be

scored as a continuous trait, with direct measurement

of the temperature that is required for cones to open

(Perry & Lotan 1979). A threshold response to tempera-

ture among different trees could give the appearance of

a binary phenotypic trait and lead to simple hypotheses

for the genetic architecture of serotiny. Future work

measuring serotiny as a continuous trait (temperature

that is required for cones to open) could lead to addi-

tional insights about the genetic architecture. Clonally

replicated common garden designs have often bolstered

association genetic studies in conifers (Neale & Kremer

2011), but are unavailable for serotinous pines. How-

ever, accounting for environmental variation across

individuals and populations in a landscape genomics

approach could also help to evaluate the extent to

which environmentally induced plasticity influences

serotiny. In on-going research, we are sequencing DNA
� 2012 Blackwell Publishing Ltd
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from parent trees and haploid megagametophyte tissues

to generate a high-density linkage map for these loci in

lodgepole pine. A linkage map for the sequenced loci

will allow better discrimination between linked and

unlinked markers and better estimates of the number of

independent loci that are associated with serotiny.

Meanwhile, the current analyses implicate 11 loci as sig-

nificantly associated with variation in serotiny and pro-

vide a basis for future research.

Genome-wide estimates of FST indicate low levels of

genetic differentiation among the populations, in agree-

ment with previous analyses across these and other

lodgepole pine populations in this region (Wheeler &

Guries 1982; Dancik & Yeh 1983; Yeh et al. 1985; Epper-

son & Allard 1989; Dong & Wagner 1994; Godbout

et al. 2008; Parchman et al. 2011). High levels of diver-

sity within and low levels of differentiation between

populations of forest trees are common (González-

Martı́nez et al. 2006; Neale 2007; Krutovsky et al. 2009).

However, in contrast to previous studies, the large

number of loci analysed here revealed clear geographi-

cal differences in allele frequencies (Fig. 3), highlighting

the potential of genome-scale SNP data to recover geo-

graphical signal that may have been previously subtle

or undetectable (Li et al. 2008; Novembre et al. 2008).

Genome-wide differentiation between serotinous and

nonserotinous trees within populations was absent

(Table 2), and there was no clustering of individuals by

phenotype in genotypic principal component space

(Fig. 3). Population structure is often the principal con-

founding factor in association genetic studies and is

often modelled as a covariate in such analyses (Yu et al.

2006). Because each of the populations analysed had

nearly identical, intermediate frequencies of serotinous

trees, any population structure would not have been a

confounding factor for mapping serotiny. Nevertheless,

the ability of this sequencing approach to detect fine-

scale population structure will be useful for future stud-

ies surveying variation across a wider geographical

range of populations and frequencies of serotiny.

Researchers have recently used candidate-gene-based

as well as EST-based association studies to dissect the
Table 2 Summary of genome-wide genetic differentiation estimates b

lodgepole pines using the hierarchical Bayesian F model of Gompert

Type Comparison

Geographical Wind River Range vs. Absaroka Range

Wind River Range vs. Laramie Range

Absaroka Range vs. Laramie Range

Phenotypic Serotinous vs. nonserotinous

The median value of the posterior distribution (in bold face) and the

presented for each pairwise comparison.

� 2012 Blackwell Publishing Ltd
genetic architecture of complex traits in various conifers

(González-Martı́nez et al. 2007; Eckert et al. 2009a, c,

2010; Holliday et al. 2010; Quesada et al. 2010; Cumbie

et al. 2011). In contrast, the current study is a first

application of genome-wide association mapping in

conifers. Gene-based and genome-wide association

mapping methods each have strengths and limitations,

and both will continue to contribute to advances in

genetics. Tests of association involving candidate genes

have the advantage of a relatively small, focal set of loci

representing functional variation and will be most use-

ful for fine-scale mapping to individual polymorphisms

within previously mapped regions (Neale & Savolainen

2004; Neale 2007; Eckert et al. 2010). A drawback of the

candidate-gene-based approach is that it can only test

for associations at loci that are defined a priori and may

therefore miss substantial components of the genetic

architecture or may not be feasible if no reasonable

genic resources exist. By contrast, genome-wide associa-

tion methods are not constrained by a priori hypotheses

and can test for associations in both genic and inter-

genic regions of the genome (Gupta et al. 2005; Hirsch-

horn & Daly 2005). Given that functional variants need

not be restricted to protein coding regions (Lynch 2007),

progress in the genetics of previously unstudied traits

might proceed through initial genome-wide association

mapping, followed by more fine-scale mapping within

candidate regions. Finally, it is noteworthy that the

manner in which we identified polymorphisms means

that our mapping was unaffected by ascertainment bias.

This is in contrast to many mapping studies that do suf-

fer from bias in ascertainment of marker loci, because

they utilize nucleotide polymorphisms that are segre-

gating within particular reference populations (i.e. have

a minimal MAF in the reference population that

exceeds some threshold; Kuhner et al. 2000; Clark et al.

2005; Albrechtsen et al. 2010).

The ability to conduct genome-wide association stud-

ies has been hindered in most taxa by the large number

of markers needed to reliably detect polymorphisms in

LD with causal variants (Neale & Savolainen 2004).

Ideally, association mapping requires a high enough
etween populations and between serotinous and nonserotinous

et al. (2012)

lower CI median upper CI

0.0111 0.0133 0.0145

0.0092 0.0113 0.0124

0.0004 0.0005 0.0006

4 · 10)6 5·10)6 6·10)6

upper and lower limits for the 95% credible intervals are



3002 T. L . PARCHMAN ET AL .
number of markers to expect that most of the genome

would be in LD with genotyped SNPs, including causa-

tive polymorphisms. Indeed, successful association

mapping studies in humans commonly utilize 1–2 mil-

lion SNPs (Carlson et al. 2003; McCarthy et al. 2008).

Pine genomes are very large (>1010 bases; Hall et al.

2000; Joyner et al. 2001), and LD has been found to

decay relatively rapidly in conifers (Brown et al. 2004;

Krutovsky & Neale 2005; Heuertz Myriam et al. 2006).

While the rapid decay of LD should facilitate fine map-

ping in association studies, it also means that enormous

numbers of SNPs (>2 million) would be preferable for

genome-wide association studies in pines (Neale & Sa-

volainen 2004; Neale 2007; Neale & Kremer 2011).

Although the 97 716 SNPs analysed here have made a

genome-wide association study feasible, the genetic

regions in LD with the genotyped SNPs still represent a

relatively small portion of the pine genome. Conse-

quently, the loci for which we detected associations

with serotiny are likely to tag genetic regions in LD

with causal variants, rather than the variants them-

selves. With increases in the ability to query larger

numbers of markers with high-throughput sequencing,

it should soon become possible to conduct association

studies that query a more substantial fraction of the

genome and to produce meaningful and thorough gen-

ome-wide association studies in conifers and other non-

model organisms.
Genomic reduction and highly multiplexed Illumina
sequencing

The sequencing approach outlined here represents a

time- and cost-effective route for producing population

genomic data for nearly any taxon, without the need

for any previous genome sequencing. The method is

similar to other recently published methods (van Or-

souw et al. 2007; Gompert et al. 2010; Hohenlohe et al.

2010; Andolfatto et al. 2011; Elshire et al. 2011), but also

differs in several details. By altering the size range of

gel-purified fragments, the degree of genomic reduction

and coverage depth for fragments can be customized to

individual sequencing projects. Sequencing of highly

multiplexed samples is made possible by the enrich-

ment procedure and by indexing DNA samples, which

can be performed at the individual or population level

(Gompert et al. 2010, 2012). Although we used 96 bar

codes in the present study, many more bar codes can

be generated for higher levels of multiplexing (Meyer &

Kircher 2010). Compared to more traditional Illumina

library preparation, this type of method has the advan-

tages of reduced sample handling, only a single PCR

step and gel purification, and inexpensive and flexible

bar coding. In addition, the use of restriction enzymes
may aid in avoiding repetitive portions of the genome

(Elshire et al. 2011). Compared to traditional SNP assay

techniques (e.g. Illumina’s Golden Gate Assay) where

SNPs are detected in a small set of individuals and then

scored in broader panels, an important advantage of

this type of multiplexed sequencing is the absence of

ascertainment bias (Kuhner et al. 2000; Clark et al. 2005;

Albrechtsen et al. 2010).

After calling variants in the reference-based assembly,

we obtained haplotypic data for 45,529 genetic regions

and SNP data for 97 616 sites. As expected, coverage

varied across these regions and across individuals, but

the average coverage depth per genetic region and indi-

vidual was 0.7·. Even though there is no draft genome

sequence for Pinus, we were able to construct a well-

defined reference sequence based on the consensus

sequences of each of the highest quality contigs from

the de novo assembly. This reference sequence could

then be used to assemble all other, well-represented

reads in the libraries, which is an important aspect of

this study for two reasons. First, de novo assemblies of

large Illumina sequencing projects are computationally

intensive, in both time and RAM requirements, whereas

in some software (including DNASTAR’s SEQMAN NGEN

3.0), reference-based assemblies are very rapid and can

also utilize hard disk space. Second, using only the

high-quality contigs in the reference sequence insured

that genomic regions that would be problematic in the

assembly, variant calling, and other downstream analy-

ses (e.g. highly repetitive regions, paralogous regions)

are not included in the alignments. Such an approach is

likely particularly critical for organisms such as pines

that have large genomes and large amounts of repeti-

tive DNA (Morse et al. 2009). Finally, by using two dif-

ferent restriction enzymes and sequencing only from

the end of each fragment cut by EcoRI, the protocol led

to alignments that were typically rectangular contigs,

with all reads sequenced in the same orientation and

beginning and ending at the same position.
Conclusions

The presence or absence of serotiny in pines has

substantial fitness consequences, yet polymorphism for

serotiny is retained in several pine species (Givnish

1981; Tapias et al. 2004; Moya et al. 2008). Serotiny has

probably had multiple independent origins in pines

inhabiting fire prone environments (Grotkopp et al.

2004). Additionally, the striking variation in the occur-

rence of serotiny among populations of lodgepole pine

has extended consequences for the forest communities

and ecosystems in which lodgepole pine is often the

foundation species (Turner et al. 2003; Benkman & Siep-

ielski 2004; Wymore et al. 2011). Consequently, there is
� 2012 Blackwell Publishing Ltd
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considerable interest in advancing our understanding of

the genetic complexity of this adaptation. Greater

knowledge of the underlying genetics will influence our

thinking about the maintenance of phenotypic variation

in the context of the geographically variable fitness con-

sequences of the trait. A more complete description of

the genetics will also enable comparative genomics to

resolve questions of multiple origins of serotiny and

common genetic architectures of the cone traits respon-

sible for serotiny in different species of pine and even

other conifers (Cupressus spp.). This study identifies a

set of loci statistically associated with serotiny in lodge-

pole pine and demonstrates the feasibility of genome-

wide association mapping in conifers. The sequencing

approach described here can be readily used to gener-

ate large amounts of data for further study of this trait.

Future work involving higher coverage sequencing and

screening a larger number of trees and mapped loci will

further increase our understanding of the genetic archi-

tecture of serotiny.
Acknowledgements

This manuscript was improved by the comments of two refer-

ees and Subject Editor R. Petit. This research was funded by

the National Science Foundation to CAB (DBI-0701757) and the

University of Wyoming Foundation to CWB.
References

454 Life Sciences Corp. (2009) Using multiplex identifier (MID)

adaptors for the GS FLX Titanium chemistry-extended MID

set. Tech. rep., Technical Bulletin: Genome Sequencer FLX

System.

Albrechtsen A, Nielsen FC, Nielsen R (2010) Ascertainment

biases in snp chips affect measures of population divergence.

Molecular Biology and Evolution, 27, 2534–2547.

Andolfatto P, Davison D, Erezyilmaz D et al. (2011)

Multiplexed shotgun genotyping for rapid and efficient

genetic mapping. Genome Research, 21, 610–617.

Arno SF (1980) Forest fire history in the northern rockies.

Journal of Forestry, 78, 460–465.

Ayliffe MA, Timmis JN (1992) Tobacco nuclear DNA contains

long tracts of homology to chloroplast DNA. TAG

Theoretical and Applied Genetics, 85, 229–238.

Balding DJ (2003) Likelihood-based inference for genetic correlation

coefficients. Theoretical Population Biology, 63, 221–230.

Balding DJ, Nichols RA (1995) A method for quantifying

differentiation between populations at multi-allelic loci and

its implications for investigating identity and paternity.

Genetica, 96, 3–12.

Baxter SW, Davey JW, Johnston JS et al. (2011) Linkage

mapping and comparative genomics using next-generation

RAD sequencing of a non-model organism. PLoS One, 6,

e19315.

Benkman CW, Siepielski AM (2004) A keystone selective

agent? Pine squirrels and the frequency of serotiny in

lodgepole pine. Ecology, 85, 2082–2087.
� 2012 Blackwell Publishing Ltd
Benkman CW, Holimon WC, Smith JW (2001) The influence of

a competitor on the geographic mosaic of coevolution

between crossbills and lodgepole pine. Evolution, 55, 282–294.

Benkman CW, Parchman TL, Favis A, Siepielski AM (2003)

Reciprocal selection causes a coevolutionary arms race

between crossbills and lodgepole pine. American Naturalist,

162, 182–194.

Benkman CW, Siepielski AM, Parchman TL (2008) The local

introduction of strongly interacting species and the loss of

geographic variation in species and species interactions.

Molecular Ecology, 17, 395–404.

Brown GR, Gill GP, Kuntz RJ, Langley CH, Neale DB (2004)

Nucleotide diversity and linkage disequilibrium in loblolly

pine. Proceedings of National Academy of Sciences of the United

States of America, 101, 15255–15260.

Carlson CS, Eberle MA, Kruglyak L et al. (2003) Additional

SNPs and linkage-disequilibrium analyses are necessary for

whole-genome association studies in humans. Nature

Genetics, 33, 518-521.

Clark AG, Hubisz MJ, Bustamante CD, Williamson SH,

Nielsen R (2005) Ascertainment bias in studies of human

genome-wide polymorphism. Genome Research, 15, 1496–1502.

Cosart T, Beja-Pereira A, Chen S et al. (2011) Exome-wide DNA

capture and next generation sequencing in domestic and

wild species. BMC Genomics, 12, 347.

Craig DW, Pearson JV, Szelinger S et al. (2008) Identification of

genetic variants using bar-coded multiplexed sequencing.

Nature Methods, 5, 887–893.

Critchfield WB (1980) Genetics of lodgepole pine. United States

Forest Service Research Paper WO-37.

Cumbie WP, Eckert A, Wegrzyn J et al. (2011) Association

genetics of carbon isotope discrimination, height and foliar

nitrogen in a natural population of Pinus taeda L. Heredity,

107, 105–114.

Dancik BP, Yeh FC (1983) Allozyme variability and evolution

of lodgepole pine (Pinus contorta var latifolia) and Jack pine

(Pinus banksiana) in Alberta. Canadian Journal of Genetics and

Cytology, 25, 57–64.

Dong JS, Wagner DB (1994) Paternally inherited chloroplast

polymorphism in Pinus – estimation of diversity and

population subdivision, and tests of disequilibrium with a

maternally inherited mitochondrial polymorphism. Genetics,

136, 1187–1194.

Doyle J (1991) DNA protocols for plants: a CTAB total DNA

isolation. In: Molecular Techniques in Taxonomy (eds Hewitt

GM, Johnston A), pp. 283–293. Springer, New York.

Eckert AJ, Bower AD, Wegrzyn JL et al. (2009a) Association

genetics of coastal douglas fir (Pseudotsuga menziesii var.

menziesii, Pinaceae). I. cold-hardiness related traits. Genetics,

182, 1289–1302.

Eckert AJ, Pande B, Ersoz ES et al. (2009b) High-throughput

genotyping and mapping of single nucleotide

polymorphisms in loblolly pine (Pinus taeda L.). Tree Genetics

& Genomes, 5, 225–234.

Eckert AJ, Wegrzyn JL, Pande B et al. (2009c) Multilocus

patterns of nucleotide diversity and divergence reveal

positive selection at candidate genes related to cold

hardiness in coastal Douglas fir (Pseudotsuga menziesii var.

menziesii). Genetics, 183, 289–98.

Eckert AJ, van Heerwaarden J, Wegrzyn JL et al. (2010)

Patterns of population structure and environmental



3004 T. L . PARCHMAN ET AL .
associations to aridity across the range of loblolly pine (Pinus

taeda L., Pinaceae). Genetics, 185, 969–982.

Elshire RJ, Glaubitz JC, Sun Q et al. (2011) A robust, simple

genotyping-by-sequencing (GBS) approach for high diversity

species. PLoS One, 6, e19379.

Epperson BK, Allard RW (1989) Spatial auto-correlation

analysis of the distribution of genotypes within populations

of lodgepole pine. Genetics, 121, 369–377.

Falush D, Stephens M, Pritchard JK (2003) Inference of

population structure using multilocus genotype data: linked

loci and correlated allele frequencies. Genetics, 164, 1567–

1587.

Givnish TJ (1981) Serotiny, geography, and fire in the pine

barrens of New Jersey. Evolution, 35, 101–123.

Godbout J, Fazekas A, Newton CH, Yeh FC, Bousquet J (2008)

Glacial vicariance in the Pacific Northwest: evidence from a

lodgepole pine mitochondrial DNA minisatellite for multiple

genetically distinct and widely separated refugia. Molecular

Ecology, 17, 2463–2475.

Gompert Z, Forister ML, Fordyce JA et al. (2010) Bayesian

analysis of molecular variance in pyrosequences quantifies

population genetic structure across the genome of Lycaeides

butterflies. Molecular Ecology, 19, 2455–2473.

Gompert Z, Lucas LK, Nice CC et al. (2012) Reproductive

isolation between two butterfly species evolved by divergent

selection. Evolution, DOI:10.1111/j.1558-5646.2012.01587.x.
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