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Abstract

A Lagrangian turbulence model is presented, which describes buoyant turbulence fully consistent with Eulerian budget
equations as motion of fluid particles and change of their temperatures. This model is applied to the description of
buoyant plume rise. Due to the simulation the turbulent mixing processes between the plume and ambient fluid in
dependence on varying ambient conditions, the plume rise model presented here offers different advantages in compari-
son to existing models: the different plume rise phases are calculated consistently and the full plume statistics is obtained.
The model predictions are compared to consequences of the similarity theory, results of large-eddy simulations and lidar
measurements of the plume height and width in the atmosphere. For different flows with varying shear and stratification,
we find in all these comparisons a good agreement between our computations and measurements, simulations and
theoretical predictions. In particular, it is shown that the similarity theory appears as a special case of the theory
presented here. The simplicity and the low computational costs of our model make it well-suited for routine applica-
tions. © 1999 Elsevier Science Ltd. All right reserved.
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1. Introduction Zhang and Ghoniem (1993, 1994a,b), Erbrink (1994),

Gangoiti et al. (1997) and Weil et al. (1997). One reason

Prediction of buoyant plume rise is a standard prob-
lem in environmental research that has been considered
since decades with more and more advanced simulation
techniques, as, e¢.g. by Csanady (1973), Briggs (1975),
Zannetti and Al-Madani (1984), Cogan (1985), Nieuw-
stadt and de Valk (1987), Weil (1988), Netterville (1990),
van Dop (1992), Nieuwstadt (1992a, b), Luhar and Britter
(1992), Anfossi et al. (1993), Hurley and Physick (1993),

* Corresponding author. Tel.: +31 15278 3649; fax: +31 15
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for this interest is the direct practical relevance of this
problem, e.g. for the assessment of the dispersion of stack
plumes. Their temperature is usually higher than that of
the environment, and such temperature differences may
have a drastic influence on the spatial distribution of
emitted substances and, in particular, their ground con-
centrations. A second reason for the continuous research
interest in buoyant plume rise is of theoretical nature,
because this problem represents a standard case for simu-
lations of the turbulent mixing of fluids with different
temperatures. The complexity of such mixing processes is
illustrated in Fig. 1, where the turbulent mixing of
a buoyant stack plume and the ambient air is shown. In

1352-2310/99/$ - see front matter © 1999 Elsevier Science Ltd. All rights reserved.
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entrainment of air  "two-thirds" power law
by plume turbulence

detrainment of plume material
by ambient turbulence

Fig. 1. Illustration of the turbulent mixing between a buoyant
(stack) plume and the ambient flow.
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Fig. 2. Illustration of differences of various techniques with
respect to the calculation buoyant plume rise. As acronyms are
used: Reynolds-averaged Navier-Stokes (RANS) methods,
large-eddy simulation (LES), direct numerical simulation (DNS),
Lagrangian dispersion models (LDM) and Lagrangian turbu-
lence models (LTM). The solid circles denote Eulerian methods
and open circles denote Lagrangian methods.

the initial stage, the turbulent mixing is dominated by the
entrainment of air into the plume by the plume-generated
turbulence. This process leads to the observed “two-
thirds” power law for the mean plume rise (Csanady,
1973; Briggs, 1975) that is shown in Fig. 1. Detrainment,
i.e. entrainment of plume material into the surrounding
fluid due to ambient turbulence (Netterville, 1990), may
then take place at later times. This process leads to
deviations from the two-thirds power law: the plume
levels off, where the final plume height is determined by
shear and stratification of the ambient flow.

Different methods for the explanation of buoyant
plume rise are compared to each other in Fig. 2. As

criteria, we consider the parametrization, simulation and
exact description of the dynamics of the plume and the
ambient flow, where the treatment of the turbulent mix-
ing between them (and for completeness the treatment of
chemical reactions between species that may be distrib-
uted in the plume and the surrounding flow) is character-
ized by the same criterias. Similarity theory provides
parametrizations for the mean plume height and width
(Csanady, 1973; Briggs, 1975) if the influence of the ambi-
ent turbulence can be neglected, i.e. if the turbulence is
generated only by the plume. This applies to the initial
stage of plume rise, and for emissions into neutrally
stratified ambient flows with a negligible turbulence. Un-
der these conditions one finds the two-thirds power law
for the mean plume height. Combined with empirical
modifications that take the influence of stratification into
account, these plume rise formulas may often be applied
as guidelines for the assessment of practical problems, as
described, for instance, by Weil (1988), Erbrink (1994)
and Gangoiti et al. (1997). The problem of these ap-
proaches is related to the fact that such fittings to
measurements have limited ranges of applicability and
cannot provide predictions for conditions where
measurements are hardly available or not of sufficient
accuracy. Just this is often found to be the case for plume
rise measurements in the atmosphere under complex
conditions, as for instance in respect to the assessment of
shear effects (Djurfors and Netterville, 1978; Weil, 1988).

For practical plume rise calculations, models are re-
quired that (i) are computationally not too expensive, (ii)
can be applied to both stages of the buoyant plume rise
and different ambient conditions, and (iii) permit the
assessment of fluctuations, i.e. provide also plume statis-
tics. The attempt to derive directly such models leads
within the Eulerian framework to Reynolds-averaged
Navier—Stokes (RANS) equations, and within the Lag-
rangian framework to Lagrangian dispersion models
(LDM), see Fig. 2. RANS equation methods (Weil, 1988;
Netterville, 1990; Gangoiti et al., 1997) apply parametriz-
ations for terms that are related to the turbulent mix-
ing of the plume and the ambient flow (and chemical
reactions if reactive plumes have to be calculated). A
shortcoming of RANS techniques is that they have to
introduce parameters that cannot derived directly from
measurements, such as a “turbulence buffet frequency”
(Netterville, 1990; Gangoiti et al., 1997) that reflects the
influence of ambient turbulence. Additionally, previously
applied methods only provide the averages of plume
characteristics, which are used then for the assessment of
statistical variations. By means of Lagrangian methods
both the mean plume behaviour and the plume statistics
can be described in accord with constraints of the sim-
ilarity theory and observations. This was demonstrated
by van Dop (1992) in a first systematic analysis of the
description of buoyant plume rise by Lagrangian
methods. Alternative methods are described by Anfossi
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et al. (1993), where a review can be found on earlier work
(see Zannetti and Al-Madani, 1984; Cogan, 1985) to
describe buoyant plume rise by means of Lagrangian
methods, and for convective conditions by Luhar and
Britter (1992), Hurley and Physick (1993) and Weil et al.
(1997). Such Lagrangian dispersion models (LDM) simu-
late the plume dynamics, but they require knowledge
about the flow field that has to be provided by Eulerian
models or approximated. Entrainment and detrainment
are reflected in LDM by parametrizations of time scales.
These concepts lead to questions, if variations of mixing
processes, e.g. due to shear and stratification, have to be
described.

Lagrangian turbulence models (LTM) extend LDM to
the whole fluid (Heinz, 1997, 1998a), this means they
describe the motion and properties of plume-particles
and fluid particles that represent the ambient flow, see
Fig. 1. In particular, these Lagrangian equations are
constructed so that usual Eulerian budget equations
are fully satisfied, see Section 2. This concept overcomes
the problems of RANS equations and LDM that are
described above (Heinz, 1998b). In contrast to LDM,
LTM calculates simultaneously the plume and the ambi-
ent flow and, in particular, their turbulent mixing in
dependence on shear and stratification. In contrast to
RANS equation methods, LTM provides the plume stat-
istics and avoids the introduction of parameters that
cannot be measured. Apart from these differences to
RANS equations and LDM, the great advantage of LTM
is that arbitrary complicated nonlinear chemical reac-
tions can be treated without having to make additional
assumptions (Pope, 1985). In analogy to direct numerical
simulation (DNS), LTM resolves mixing and chemical
reaction processes for high-Reynolds number flows, see
Fig. 2. The main difference between DNS and LTM is
that the high computational costs of DNS make this
method only for flows with low Reynolds and Damkoh-
ler numbers realizable, whereas LTM can be applied to
arbitrary flows due to its much lower computational
costs. This fact is of considerable practical relevance,
because only a few turbulent flows of engineering and
environmental interest are characterized by low
Reynolds and Damkohler numbers. In respect to practi-
cal applications, LTM also offers advantages compared
to large-eddy simulation (LES) that applies approxima-
tions only for the smallest scales (Nieuwstadt and de
Valk, 1987; Nieuwstadt, 1992a,b; Zhang and Ghoniem,
1993, 1994a,b), see Fig. 2. The reason for that are two-
fold: first, the computational effort of LES and its
current limitation to simple geometries makes it less
attractive for routine applications, and second, the deri-
vation of simple (integral) models for buoyant plume rise
from LES which would be applicable for regulatory ap-
plications is difficult (Nieuwstadt and de Valk, 1987;
Nieuwstadt, 1992a, b). In contrast to this, the latter can
be achieved by simplifying LTM, as demonstrated here.

The main concern of this paper is to derive a buoyant
plume rise model from LTM, which can be used for
regulatory applications and satisfies the constraints
(i)—(iii) considered above. The LTM is presented in Sec-
tion 2, where the derivation of the Lagrangian equations
and time scales that appear in these equations is de-
scribed. In Section 3, a buoyant plume rise model is
derived from LTM. In Section 4, the predictions of this
model are compared to the consequences of similarity
theory for a neutrally stratified flow and LES data for
plume rise in a stably stratified flow. In Section 5, we
compare our model predictions with results of plume rise
measurement in the atmosphere. Finally, conclusions are
drawn with respect to theoretical questions and practical
applications.

2. Lagrangian turbulence models

The description of the motion of all fluid particles
of the flow (i.e., of plume- and ambient-air particles, see
Fig. 1) requires Lagrangian equations that are consistent
with the Navier-Stokes equations. Two methods are
used to date which are aimed at this consistency: first, the
derivation of stochastic Lagrangian equations that are in
consistency with RANS equations up to second order
(van Dop et al., 1985; Sawford, 1986; Pope, 1994a; Heinz,
1997, 1998a), and second, the derivation of these equa-
tions in agreement with the one-point Eulerian velocity
probability density function (PDF) (Thomson, 1987). Re-
views of theoretical aspects of these developments can be
found in Sawford (1993), Pope (1994b) and Rodean
(1996), and the progress in the solution of practical ques-
tions (in particular by means of the second approach) was
described by Wilson and Sawford (1996).

The second approach requires the joint velocity—tem-
perature PDF, which poses a complicated problem for
the conditions considered here. In contrast to convective
boundary layer turbulence, e.g. this PDF cannot be con-
sidered as a simple superposition of modes that reflect the
upward and downward motions, but it has a more
complex structure resulting from modes that reflect the
upward buoyant-motion and the damping influence of
the ambient turbulence. Therefore, the first approach is
applied here. This method requires closure assumptions
for the pressure redistribution and dissipation terms in the
RANS equations of second order that are used to con-
struct the Lagrangian models, see Section 2.2. Such par-
ametrizations are known and relatively well-investigated
for buoyancy-affected flows (see, e.g. Craft et al., 1996).

It is worth emphasizing that Lagrangian models de-
rived in that way differ considerably from (second-order)
RANS equations, although they are constructed in con-
sistency with them: First, such LTM enable a much more
comprehensive description of turbulence, because not
only the dynamics of some moments of the joint velocity-
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temperature PDF is described, but the PDF itself. This
additional knowledge permits valuable insight, e.g. into
flow structures (Heinz, 1998b) or, with regard to reacting
flows, into the competition between mixing and reaction
(Gonzales, 1997). Moreover, different closure problems of
RANS equations do not appear, as those related to triple
correlations or mean chemical conversion rates. Second,
the applied consistency constraint does not affect the
description of time scale variations, which is a central
ingredient of turbulence models. It is accepted that many
problems in RANS methods are related to such equations
for the dissipation rate of turbulent kinetic energy (TKE),
characteristic turbulence frequency or dissipation time
scale. The difference between LTM and RANS equations
with respect to this problem is given by the fact that
instantaneous events (the mixing of momentum and scalar
particle properties) are described in LTM. This means, that
assumptions on the elementary mechanisms of
mixing processes can be applied in LTM, whereas the
effect of these processes on the dynamics of averaged (or
filtered) quantities has to be predicted in RANS methods
(or LES), which is obviously much more complicated.
In Section 2.1, the Lagrangian equations are intro-
duced and the Eulerian transport equations for mean
quantities and variances are derived from these equa-
tions. In Section 2.2, the coefficients in these equations
will be evaluated, so that given second-order budget
equations of turbulence are fully satisfied. More details
about the derivation of stochastic Lagrangian equations
for buoyant turbulence can be found elsewhere (Heinz,
1997, 1998a). In Section 2.3, the estimation of time scales
is considered, which appear in the Lagrangian equations.

2.1. Lagrangian equations

PDF transport equations appear often as high-dimen-
sional partial differential equations. An extremely fruitful
way to look at such equations uses a Lagrangian re-
presentation following a fluid particle (Pope, 1994b;
Thomson, 1987), because this approach makes a power-
ful numerical method available for their solution: Monte
Carlo simulation (Fox, 1996). In such Lagrangian PDF
methods, realizations of the PDF are described by
stochastic differential equations (see, e.g., Gardiner, 1983;
Risken, 1984). By restricting the consideration to linear
equations, the change in time ¢ of positions x* = (x¥, x3,
x%¥) and velocities U* = (U¥, U%, U%), which are seen as
properties of a fluid particle moving with the flow, may
be written as (i = 1, 2, 3)

d . s
q 0 =Ur, (1a)

d
@ UF@t)=a; + G;(UF — <Up)

W )

+ Gi{(@* —(Op)) + b;; G

where summation over repeated subscripts is assumed.
Deterministic changes of the particle velocity are de-
scribed through the first three terms on the right-hand
side of Eq. (1b) with the unknown coefficients a;, G;;, G;.
These changes are the consequence of: gradients of mean
Eulerian fields that are imposed by the boundary con-
ditions (the first term), differences between the actual
particle velocity and the Reynolds-averaged Eulerian
velocity <U) (the second term) and between the actual
potential particle temperature ®* and the Reynolds-
averaged Eulerian potential temperature <®) (the third
term). Eulerian quantities are written without star in
contrast to Lagrangian quantities. Their position de-
pendence is replaced in the Lagrangian equations by the
actual particle position. The last term describes the influ-
ence of a stochastic force (proportional to b;; which has to
be determined) that describes random accelerations due
to the turbulent motions at the smallest scales. This term
is characterized by the white noise dW;/dt, which is a
Gaussian process with vanishing mean values, <dW;/dt)
=0, and with uncorrelated values at different times,
dW;/de(t) - dW;/dE (1)) = 0;;0(t — t'). The symbol §;;is
the Kronecker delta and 6(¢t — t') the delta function.

In a formal analogy to the velocity equation (1b),
a stochastic equation for the potential temperature @* is
assumed, which is coupled to the particle motion, i.e.

d
a®*(f) =dag + Go; (UF —<Up)

dw
+Go(O@F —<O)) + by~ - 2

where the ay, Gyj, Gy and b, have to be determined and
dW/dt has properties that correspond to those of dW;/dt
in the velocity equation: <dW/dt) = 0, (dW/dt(¢)- dW/
dt' (t')y =6(t — t'). Moreover, dW/dt and dW;/dt are
assumed to be uncorrelated over time steps that are
much larger than the Kolmogorov microscale,
dw/dt(t)-dW;/dt’ (¢')) =0, so that the stochastic
terms in the velocity and temperature equation do not
cause systematic effects on the particle motion.

The Egs. (1a) and (1b) and (2) can be transformed into
a Fokker—Planck equation for the one-point joint velo-
city—temperature PDF of the flow (Gardiner, 1983; Ris-
ken, 1984). From that equation, transport equations can
be derived for all the moments of this PDF by multiplica-
tion with the corresponding variables and integration. By
invoking the incompressibility constraint o0U, /0x; = 0,
these equations read for the mean values

MHU»MJFM:% (3a)
dt j axj'

GREC). 0<O) olu; 0y
o Pt T (3b)

J J
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where u;, = U, — (U;) and 0 = ©® — (®) denote Euler-
ian fluctuations, i.e. <u;u;» and {u; 0) are the variances
and covariances of the Eulerian velocity—temperature fields.
In the same way, budget equations for the variances of
the velocity and potential temperature fields can be de-
rived from the Egs. (1a) and (1b) and (2). This leads to

a<uiuj> a<uiuj> a<ukuiuj>
ar <Y o | om
+ luyg u < J>+<k ]>6<U>

= Gy <ug ujy + Gy <uyge vy

0 <u; 0y 6<u 0> 6<uku,~9>
a0 ox,
AL 2 U
Oy
= G;;<u;0) + Gi<92> + Gor{ugui ) + Go<u; 07,
(4b)
2 2 2
2wy D 0O
Xk

Egs. (3a) and (3b) and (4a)<(4c) contain the unknown
coeflicients a;, ap and G;j, G;, Gyj, Gy, b;j, by that appear on
their right-hand sides. These quantities will be estimated
in the next subsection through the comparison of Egs.
(3a) and (3b) and (4a)—(4c) with transport equations that
are used in the second-order closure theory.

2.2. Estimation of coefficients

By invoking the Boussinesq approximation and the
incompressibility constraint, Eqs. (3a) and (3b) are found
to be consistent with the Eulerian transport equations for
the mean momentum and potential temperature if

ey o
a; = i3>
ka OXy - 6x, T 9%
0°¢(®)
= . 5
o * axkaxk ( )

Here, p is the Reynolds-averaged pressure, p the averaged
fluid density, v the kinematic viscosity, o the coefficient of
molecular heat transfer and g the acceleration due to
gravity. Molecular effects can be neglected for the prob-
lem considered here, therefore we find ay = 0 according
to relation (5). A corresponding direct conclusion with
respect to a; cannot be drawn due to the appearance of
the pressure gradient and gravity acceleration.

The comparison of Eqs. (4a)—(4c) with the correspond-
ing exact Eulerian RANS transport equations reveals

that the terms on the right-hand side of Egs. (4a)—(4c)
correspond to parametrizations of the dissipation and
pressure-strain terms. We now apply (b?);; = Co ¢*/(27)
8;; and bf = C;-<0*>/(27) for the coefficients of the
stochastic forces in (1b) and (2) (van Dop et al.,, 1985;
Thomson, 1987) with Co = (k; — 2)/3and C; =2 ks — 2
ks — kq, and

k
Gyj= — 4—; 0ijp Gi =gz, Goi =0,
2ky — k
Go= == ©)
T

for the other coefficients. Here, the dissipation time scale
7 = q?/(2¢) is used with ¢* = {u; u;)> as twice the TKE,
and ¢ is the mean dissipation rate of TKE. Further, f§
is the thermal expansion coefficient, and k;, k3 and ky
are closure parameters, see Section 4 for their estimation.
The choice of G;;, G, Gyj, Gy, b;j, by corresponds to closure
assumptions for the dissipation and pressure-strain terms
according to Kolmogorov’s (1942) theory and Rotta’s
(1951) hypothesis of a return-to-isotropy pressure-
redistribution. There exist also other (more complicated)
choices for the coefficients G;j, G;, Gy;, Gy which satisfy
the same parametrizations. This problem and the estima-
tion of Cy and C; are discussed elsewhere (Heinz, 1997).
The Lagrangian equations (1a) and (1b) and (2) can also
be constructed in consistency with more complex pres-
sure-strain models (Craft et al., 1996), but the good per-
formance of the applied models (see Sections 4 and 5)
justifies the simple choice presented here.

2.3. Scaling of the Lagrangian equations

Lagrangian equations (1a) and (1b) and (2) describe the
turbulent flow in dependence of the dissipation time scale
7 that has to be provided. This quantity scales the dy-
namics and intensity of turbulent mixing processes, for
instance, between a (buoyant) plume and the ambient
flow, as illustrated in Fig. 1. The mixing processes may
vary strongly with shear and stratification, so that t has
to be estimated in dependence on these quantities.

This can be achieved by postulating a budget equation
for v that completes the Lagrangian equations. All the
details about the derivation of this relation, comparisons
with other theories (which are used, e.g., to complete
Eulerian turbulence models) and results of LES, DNS
and measurements can be found in Heinz (1998a). This
equation for T may be written as

d 21
af =(Cz — 1) —(Cyy — 1);

< D

{ Sug ugy + By <us 3>} (7)
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where C,; and C,, are constants with standard values
C,; = 1.56 and C,, = 1.9. The first term on the right-
hand side of (7) causes a linear increase of t in corres-
pondence with Kolmogorov’s (1942) frequency equation.
This term is related to the dissipation of the plume-
generated turbulence, which governs the initial stage of
plume rise and plume rise in a calm ambient flow. It will
be shown in Section 4.1 that the similarity laws of buoy-
ant plume rise to production of turbulence (the terms in
the bracket represent the production of TKE). This term
brings the influence of the ambient turbulence into play,
and, in particular, it explains the dependence of t on
shear and stratification. In accord with the Lagrangian
equations (la) and (b) and (2), the model (7) describes
turbulent mixing processes with frequencies that are
smaller than those related to the Kolmogorov micro-
scale. These processes are induced by the initial plume
buoyancy and forcing of the ambient flow, i.e. shear and
stratification.

Egs. (1a) and (1b) and (2) together with the expressions
(5) and (6) represent in conjunction with the time scale
Eq. (7) an LTM. According to these equations, the
change of particle properties depends on the Eulerian
mean velocities, temperatures, the covariances of these
fields and the mean pressure gradient that is required for
the calculation of a;. These quantities can be derived from
spatially averaged particle properties, as described by
Pope (1985, 1995). Thus, these equations are closed for
given boundary conditions and initial values for the
positions, velocities and temperatures of particles.

3. Buoyant plume rise equations

Now, we use LTM (1a) and (1b), (2), (7) to derive the
buoyant plume rise model. With reference to the
constraints considered in Section 1 we apply some ap-
proximations, so that the procedures to calculate means,
variances and the mean pressure gradient do not have
to be applied. We consider a horizontally homogeneous
turbulent flow with a vanishing Eulerian mean vertical
velocity, <U3)» =0, and a horizontal velocity along the
xq-axis, i.e. {<U,)» = 0. The turbulence is driven by verti-
cal gradients of the mean horizontal velocity {(U;) and
the mean potential temperature {® ), which are imposed
through the boundary conditions. These assumptions
correspond to a simple model for the atmospheric
boundary layer above flat terrain.

Next, we consider the release of buoyant particles from
a source localized in that flow. The buoyancy will mainly
affect the vertical structure of the turbulence, so that we
can assume that the mean flow field can be described
again by the vertical characteristics of (U;) and {(®).
The mean Eulerian vertical velocity that appears in Eq.
(1b) has to be calculated as superposition of the mean
vertical velocity of buoyant particles and the mean verti-

cal velocity of the surrounding fluid. The resulting mean
flow velocity can be expected to be small, because the
upward motion of buoyant particles is compensated lo-
cally through downward motions of the surrounding
fluid. In any case, neglecting the small mean Eulerian
vertical velocity does not have any influence on the
plume width, and could modify only somewhat the cal-
culated mean plume height, but this quantity is found in
agreement with LES data and measurements, see below.
In addition to (U;» =0 we assume that spatial vari-
ations of S = 0(U,)>/0x; and N? = fig 0{®)/0x3 (N is
the Brunt—Viisild frequency for a stable stratification)
are small over the range of plume rise, so that a linear
interpolation of their variations appears to be justified.
Zhang and Ghoniem (1994a) also considered a constant
N?in their LES of buoyant plume rise in stably stratified
flow, see Section 4.2.

By invoking these assumptions, 0CU;)/0x; = S 0Xy3,
(U,) =<{U3)> =0, fg 9{O®)/dx; = N? 53, where N?
and S are constant, we see by means of Eqs. (4a)—(4c) that
spatial variations of the variances may only arise from
the gradients of triple correlations or the convective
terms (U ; Y0<u; u;» /0x41, (U1 0 <u; 05 /3xy, (U ) 90?>
/0x;. In the first stage of buoyant plume rise, the plume
turbulence is mainly determined by dissipation (see Sec-
tion 4.1). This means that {u;u;», (u;0) and <6*)» change
according to the terms on the right-hand side of Egs.
(4a)—(4c), so that the triple correlation and convective
terms do not contribute significantly. At larger distances,
the influence of ambient turbulence may lead to a levell-
ing-off of the plume, which is induced by the terms
related to shear and stratification on the left-hand sides
of Egs. (4a)—(4c). It may be expected that the contribution
of horizontal gradients and triple correlation gradients to
the description of the asymptotic stage of plume rise is
also negligible, provided that no convective conditions
are considered where the triple correlations are essential.
Thus, it is justified to neglect these terms in Egs. (4a)—(4c),
which leads to the conclusion that the gradients of vari-
ances in Eq. (1b) disappear, i.e. in particular, a; = 0.
These assumptions will be justified by the results present-
ed below.

The Lagrangian equations read with these assump-
tions

d
L =ur (8a)
d kl Cg q2 dW3

—Us= —-LU%+B* , 8b
e ° A / 2t dt (8b)
d ks — ky

_ B* — B* _ NZ %

dt 47 Us

Ci (Bg)* <0*) dW
S e (8¢)
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where the influence of buoyancy on the particle motion
(the second term on the right-hand side of Eq. (8b)) is
written as B* = fg (©@*<0®)) that gives the particle
buoyancy acceleration. Eq. (8c) for B* can be obtained
from the temperature Eq. (2).

For the time scale Eq. (7) we obtain now

d 2
S T=(Co—1—(Ca —nq—ﬁ
{ = S<uyuzy + Pg<us 05}, )

and the variances that are needed for the calculation of
t and the coefficients of the stochastic terms in (8b) and
(8c) can be found as solutions of the equation system

2037

consequences of similarity theory. In Section 4.2, our
calculations of buoyant plume rise in flow with varying
stability are compared to LES data. The consideration of
these limit cases of the BPRM at large and small
times provides also information about the model para-
meters.

4.1. Similarity laws

For a neutrally stratified and uniform flow
(N = S = 0), the time scale of turbulence 7 at large times
has to be independent of initial values. By neglecting the
influence of the initial values of the time scale t, vertical
heat flux {u; 0> and temperature variance <0>)» on t at

Suguzy —ki/21) By 0 ) 0 0 Suguszy
{uy 6 —N?/Bg —ks/(27) -S 0 0 0 {uy 6
df w0y |_| 0 0 —k/@) —NBg B O Cus 0 )
de | <ui> 0 0 29 —ki/2r) O (ki=2)/(67) u3)
0% 0 0 —2N?/Bg 0 —ky/7 0 0%
q> —28 0 2pg 0 0 -1/t q>
These Eqgs. (8a)—«(8c), (9) and (10) represent our buoyant t - oo, we find by means of Egs. (9) and (10)
plume rise model (BPRM). It is worth emphasizing that
this model is obtained from the LTM (1a) and (1b), (2), (7) T=(Cr— 1t (11)

by neglecting a few terms of minor relevance, i.e. no
additional parameters are introduced. The applied as-
sumptions remove the problem to estimate mean vel-
ocities and temperatures and the mean pressure gradient
by means of the procedure described in Section 2.3 (the
equations appear in a closed form), and they permit the
derivation of the plume rise scaling laws, see Section 4.1.
The BPRM satisfies the demands on models for practical
plume rise calculations as considered in Section 1, (i) it is
computationally not expensive (the ordinary and
stochastic differential equations can be solved easily), (ii)
it can be applied to both stages of the buoyant plume rise
and ambient conditions with varying shear and stratifica-
tion, and (iii) it provides the plume statistics. Due to the
neglect of the gradients of triple correlations, the BPRM
does not reflect the typical features of convective flows
(see, for instance, Willis and Deardorff, 1987; Luhar and
Britter, 1992; Hurley and Physick, 1993; Weil et al., 1997),
so that calculations of buoyant plume rise in such flows
require the application of LTM.

4. Comparison with similarity theory and LES

First, the BPRM predictions will be compared with
results of other theories and computational techniques,
which can be done for uniform flows. In Section 4.1, we
derive for a neutrally stratified flow the asymptotic fea-
tures of the BPRM and compare these findings with the

as result of the first term on the right-hand side of Eq. (9),
which corresponds with the consequences of similarity
theory and permits the analytical calculation of the
plume properties. By averaging Eqs. (8a)—(8c) and apply-
ing the initial values {x%» = <U%> =0, {(B*> = (By>,
we obtain for the mean plume height {(x%¥) for t —» o0

{Bo) ‘C%

*N Im,’
N2 my (my —my) (Cyy — 1)27m %

(12)

where t,, = /1, is the time normalized to the initial time
scale t,. Additionally, the abbreviations m; =2 —
(ks = k1)/(A[Cor — DD and my = 1 — ki /(4 [Co — 1)])
are used, and m, < m; is assumed as usually given with
standard values for these parameters. The latter condi-
tion is required in order to estimate the leading power of
t, for the estimation of the asymptotic plume rise.

A corresponding result can also be obtained in the
Eulerian approach (Weil, 1988; Netterville, 1990), where

3 1/3
H=l— By 1§ 12 13
x%) <2nﬁ%> {Boy 70 tx (13)
is derived with fip as entrainment constant. We see that
the results of the BPRM coincide with (13) when
my = 2/3, i.e.

3ky [k 1
c82=1+—1<3——>, (14)

8 \k, 2
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Fig. 3. The (a) normalized mean particle height and (b) square root of the mean particle dispersion as function of time calculated from the
BPRM for a neutrally stratified and uniform flow (solid line). The triangles give the two-thirds power law that is predicted by the

similarity theory.

and, when the factors of t2/3 in Egs. (12) and (13) are the
same, which may be written as a condition for k; as

2\ 1/4 -1/4 -3/4
N E N R TN
2 ky 2 2\k; 2

(15)

Analytical expressions for the variances of the particle
position, velocity and buoyancy (%3, (U3, (B?> can be
derived by integrating Eq. (10) in order to calculate g>
and <0%). For the comparison of these results with the
consequences of the similarity theory, is most suited to
consider (B2, because only one power of ¢, appears,

(B*) = (Bo) [(Co = ) t,] = ka/(Cia-1),  (16)

where (B3> denotes the initial particle buoyancy vari-
ance. Similarity theory provides for the scaling law of the
plume buoyancy variance <(B2) ~t,”%/3, but experi-
mental evidence is lacking (Csanady, 1973). We see that
the similarity theory constraint is satisfied, when

Cor=1+3 ks (17

This is an important result because it means that the
coefficient of the stochastic force in the temperature
equation has to vanish, i.e. C; = 0. This can be seen by
combining Egs. (14) and (17), which leads to the condi-
tion 2k; — ky = 2k4. By applying C; =0, one finds
asymptotically for the other variances

- <§2>
0% = <B—§0 (U5?, (18)
B'Z
3y =382 (e (19)

(B3

where (Uz) =<(Bo> 1o (Cpo — 1y 21571 /(my — my)
can be found in the same way as the expression (12) for
{x3». By invoking relation (17), expressions (18) and (19)
provide the correct similarity behaviours for these vari-
ances: U3 ~ 12 and (X3) ~ t¥3. With respect to
relation (19) it is interesting to note that a corresponding
assumption is applied in the Eulerian theory (Netterville,
1990), where the “active plume” radius is assumed to be
proportional to the mean plume height over the source
for t,, > 0.

Hence, the asymptotic features of the BPRM are found
to be in agreement with the consequences of similarity
theory provided that the stochastic source term in the
particle buoyancy equation (the last term on the right-
hand side of Eq. (8c)) is neglected and the parameters of
the BPRM satisfy the consistency constraint (14). The
computation of the normalized mean plume height
{x$>/({Boyt3) and radius {X3>'?/({By>t3) for these
conditions is presented in Fig. 3, which shows how these
curves approach asymptotically to their scaling laws.
Details of the numerical calculation are given in Section
4.2 in conjunction with the description of the choice of
parameters.

4.2. Stably stratified flow

Now, we investigate the effect of stability on buoyant
plume rise by considering variations of the buoyancy
parameter B = 1/(N? 3), which is infinity in the calcu-
lations presented in the previous section. For small times,
these estimates can be compared with the LES of Zhang
and Ghoniem (1994a), provided that 73 is interpreted as
13 = n'? Ry/<{By), where R, is the radius of the active
plume.
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Fig. 4. The (a) normalized mean particle height and (b) square root of the mean particle dispersion as function of time calculated from the
BPRM for different stabilities (solid lines). The symbols give the corresponding LES results of Zhang and Ghoniem (1994a) for various

values of the buoyancy parameter B.

In Fig. 4a, our calculated normalized plume height
(x%> /({By)13) is compared to these LES data (our nota-
tion {x%>/({Bo) t3) and t,, corresponds to z and x in the
notation of Zhang and Ghoniem, respectively). We see
that the agreement between the results obtained in both
approaches is very good. For B = oo, our curve co-
incides with the curve presented in Fig. 3a, which ap-
proaches asymptotically to the two-thirds power law. In
Fig. 4b, our calculation of (%32 /({B,) t3) is compared
to the vertical plume radius that is provided by LES. The
latter quantity is the half plume width, which is “defined
in terms of the maximum vertical extension of the plume
cross section, along the downwind distance”, see Zhang
and Ghoniem (1994a). Although the plume radius is not
identically defined in both approaches, we see that the
effect of stability is reflected very similar.

These calculations are performed with 25000 particles
and a time step At = 0.05 74 by applying a Runge-Kutta
procedure. For the initial values of particle properties we
used: x§ =0.5(By>td &, Uf=0 and B* = (B,
[1 4 (B3>Y2/(By> &,], where &; (i = 1, 2) are Gaussian-
distributed random processes with (&> =0, (&3> =1
and {&:&,> =0. The factor 0.5 of x¥ was chosen in
accord with the LES data, see Fig. 4b. The setting of
(B3>V?/{B,> for the estimation of B, is important for
the asymptotic features of the variances, see Egs. (16), (18)
and (19). By means of relation (19) and the calculation of
the ratio between the plume radius and height by the
measurements presented in Section 5, we derived
(BE>'?/{(By> = 0.42. The initial values for equation sys-
tem (10) that are required in addition to {u;0) =
(0*» =0 are chosen as: {(ujuzd = u3d=<u0>=0
and ¢? = 0.1{By>? 3. The choice of the latter value has

only a minor influence on the plume radius at very small
times. Three relations for the model parameters k4, ki, k4,
C,; and C,, are given through Egs. (14), (15) and (17).
C,y was related to C,, by C;; = 1 + (C,, — 1)/1.6 (Heinz,
1998a). To estimate the remaining open parameter, we
estimated the effect of C,, on the variation of the mean
plume height with the buoyancy parameter B, see Fig. 4a.
We found that C,, = 1.286 brought the best agreement
between the BPRM and LES predictions. By adopting
this value and fp = 0.49 (Zhang and Ghoniem, 1994a),
the other parameters are found as k; = 9.18, k; =4.99
and k, = 0.4. The values for k, and k5 are within the
range of estimated variations of these quantities, but k, is
found to be smaller than usually applied values (Heinz,
1998a). This parameter characterizes the ratio of the
mean dissipation rate of the temperature variance to that
of TKE, which can be expected to be small for the
conditions considered where the turbulence dissipation
dominates.

5. Comparison with plume rise measurements

Now we compare the predictions of the BPRM with
results of measurements. The assessment of the influence
of the ambient conditions requires simultaneous
measurements of plume characteristics and wind shear
and stability of the atmosphere. To our knowledge, these
data sets are sparse. We compared our model predictions
with lidar plume rise measurements, which have been
analyzed by Erbrink (1994). These measurements were
performed near power plant stacks at different sites in
Holland, Germany and Poland in 1988-1990 for a wide
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variety of (winter and summer) conditions. For that com-
parison, we used the plume rise measurements near the
power stations Nijmegen, Amer, Buggenum and Lippen-
dorf in Holland and Germany. We did not consider the
lidar measurements in Cracow since these concerned
a merged plume, which originated from two stacks with
different heights (225 and 260 m) at a distance of 75 m.

The BPRM equations can be made dimensionless by
combination with the corresponding powers of (B, ) and
To. The calculated normalized plume heights <{x%¥)/
({Boyt3) and radius {x3>'/? /({B,» t3) depend then upon
the normalized initial velocity V,/({Bo) 7o), the shear
number S 7, and the buoyancy parameter B = 1/(N? 73).
The influence of these quantities on plume rise is con-
sidered in the next three subsections.

5.1. Effect of exit velocity

In order to calculate V,/({Bo) 10), S 79 and B, we have
to derive the scaling quantities for the BPRM, {(B,) and
7o, from the emission data and meteorological condi-
tions. The initial time scale is calculated by means of
13 = n'? Ry/{By» as above, and the initial buoyancy by
its relation to the initial plume buoyancy flux F, (Netter-
ville, 1990), <(Bo> = Fo/(Uqo R3). F, is then calculated by
means of Fy = g R V, (T, — T,)/ T, (Seinfeld, 1986), and
the initial radius R, of the active plume is obtained by
Ro =R, (2 V, T)'*/(U, T,)"* (Netterville, 1990). Here,
U, is the mean horizontal velocity at stack height, R, the
stack radius, V; the exit velocity of the emissions, and
T, and T, are the temperatures of the emission and the
surrounding flow at stack height, respectively. The es-
timation of t, provides a range 1.7 s < 7y < 4.5s, and the
values for (B,) are found in a range 1.0 m s~ 2 < {(By)
<28ms 2

By means of these estimates of (B, ) and t,, we find the
normalized initial velocity within a range 0 < V,/({Bo)
T0) < 5 for all measured data. Fig. 5 shows the mean
plume height (the plume radius is not influenced by
variations of V,/({(By) t¢)) for a neutrally stratified and
uniform flow for the two limit cases V,/({By) 7o) = 0 and
Vi/({Bo)70) = 5. The calculation of t,, = t/7, for the mea-
sured data reveals that ¢, > 13.4 in all cases. For that
range of t,, we find the effect of V,/({By) 1) to be negli-
gible, in particular because most of the data have values
V,/({Bo) 10) that are smaller than 5. Thus, as done before
we can neglect V,/({By)»1,) for our study of the effects of
shear and stratification.

5.2. Effect of shear

Calculations of the normalized plume height {x%)/
({Boyt3) and radius (X3>'2/((B,> t3) are presented in
the Fig. 6 for a neutrally stratified flow with different
values of the dimensionless shear number S 7,. We see,

I 10 100 1000
1000 L L 1000

—_— V. (<Bp>71) =0

100 Vil (B>t =3 = 100

<X3‘>
(By)t,

1 10 100 1000
t.

Fig. 5. The normalized mean particle height as function of time
for a neutrally stratified and uniform flow in dependence on the
normalized initial particle velocity V,/({Bg) 7o)

the stronger the shear, the stronger is also the levelling-
off of the plume height and radius since the difference of
the temperatures of the plume and the ambient fluid
vanishes faster due to the increase of the ambient turbu-
lence intensity. Fig. 6 shows that there is no significant
effect of shear for t, < 250 for the considered values of
S 10. For virtually all measurements, ¢, and S 7o were
smaller than 250 and 0.06, respectively. This fact leads to
the conclusion that the atmospheric conditions for the
plume rise measurements do not allow an assessment of
the effect of shear.

Similar results for the effect of shear can also be ob-
tained by Eulerian methods, as described by Djurfors
and Netterville (1978). They assumed that the vertical
profile of the mean horizontal wind can be described by
a power law <(U;) = Uy (1 + x3/z0)", where x3 is the
height above the stack, and z, a reference height. This
velocity profile causes a modification of the two-thirds
power law: {x%¥) t2/®*#_Quantitative comparisons with
their results are difficult. The power pu = [0{U;>/0x3]
(x3 = 0) zo/U, represents a dimensionless shear number
as S1,, but the time scales in these shear numbers are
defined differently: zo/Uy = (1 + p/2) RJ/(U, fp) whereas
our model applies according to the LES data 7, = n'/*
R&?/{By>1?, so that comparisons depend on the time
scale ratio.

5.3. Effect of stability

Fig. 7a shows a scatter plot of measured plume heights,
which are made dimensionless by dividing them by
{By»13, versus the corresponding modelled normalized
plume heights. The buoyancy parameter B varies in these
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Fig. 6. The (a) normalized mean particle height and (b) square root of the mean particle dispersion as function of time for a neutrally
stratified flow in dependence on the dimensionless shear number S 7.
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Fig. 7. Scatter plots of the measured versus modelled (a) normalized mean particle height and (b) square root of the mean particle
dispersion. In the measurements, the buoyancy parameter B varies between 66 and infinity.

measurements between 66 and infinity, but in the most
cases B is higher than 400. This figure reveals that the
agreement between the observed plume heights and our
predictions is very good. This means in particular that
our model predictions are not only in accord with the
two-thirds power law (see Fig. 3a), but estimate correctly
the levelling-off of the plume due to stability, see Fig. 4a.
Fig. 7b shows the same comparison in respect to the
plume radius, which reveals also a good agreement. As
can be expected, the scatter of data is larger here than for
the plume heights. It is worth emphasizing that Fig. 7b

demonstrates that the two-thirds scaling law for the
plume radius provides a good guideline for the assess-
ment of the plume spreading.

6. Summary and concluding remarks

We applied a new concept to calculate buoyant plume
rise. In contrast to RANS or Lagrangian methods ap-
plied previously, the turbulent mixing between the plume
and ambient flow is simulated for varying conditions
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without having to make ad hoc assumptions on entrain-
ment processes. The model input data are measurable
and the computational costs of the BPRM are low com-
pared to LES. The plume rise calculations presented in
Section 5, e.g. can be performed in a few minutes on a PC.
Thus, the BPRM is well-suited for routine applications.

We compared our model with the consequences of
similarity theory, LES and measurements in the atmo-
sphere. For emissions into a flow without shear and
stratification, the similarity theory predictions are found
as a special case of our theory. By choosing suitable
relations between the model parameters and neglecting
the source term for particle buoyancy fluctuations
(C; = 0), our asymptotic plume rise predictions for the
mean plume height and radius agree exactly with the
similarity theory results. The condition C; = 0 represents
an interesting theoretical result and rises the questions
about the need to consider a stochastic source term in the
particle temperature equation. The conclusion that can
be drawn from the comparisons with measurements in
the atmosphere and LES is that the contribution of this
term is small for the conditions considered here, which is
plausible because the buoyant plume rise is determined
essentially by the dissipation of plume turbulence. How-
ever, we believe that the consideration of such a (small)
source term could be important under more complex
conditions, e.g. to explain the penetration of inversion
layers or the plume spreading in the strongly stably
stratified atmosphere. For emissions into flows with
shear and stratification, the BPRM provides the typical
levelling-off of plume height and radius. The effect of
shear on plume rise is predicted in correspondence to
results obtained in the Eulerian framework, and the effect
of stability is predicted in a good agreement with LES
data and measurements in the atmosphere.
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