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ABSTRACT

A conceptional approach was developed to describe turbulent diffusion in a
high-Reynolds number flow in the Lagrangian framework by stochastic
differential equations for particle motion. With respect to practical applications
buoyancy effects and chemical reactions have to be considered additionally. It is
described here, how this can be handled in the Lagrangian concept, where
consistency between the Lagrangian and the Eulerian view is guaranteed for the
means and variances of the quantities considered. This is achieved by calculating
the coefficients appearing in the Lagrangian equations based on a turbulent
timescale, which can be related to gradients of mean wind and temperature.

INTRODUCTION

It has been demonstrated e. g. by van Dop et al. [1], Thomson [2] and Sawford
[3], that it i1s very convenient to describe particle motion in high Reynolds-
number flows by stochastic differential equations. Accordingly, diffusion
processes can be described in complex flows incorporating the effects of
inhomogeneities, instationarities and non-Gaussianity in the turbulent velocity
distribution and additionally close to sources. Only recently, the incorporation
of buoyancy effects by a linear stochastic differential equation for the potential
temperature is discussed by van Dop [4, 5] and a model for simulating chemical
reactions in a turbulent flow was proposed e. g. by Pope [6]. However, it is in
question in which way equations for fluid particle properties can be derived on a
common basis, including the influences of both buoyancy and chemical
reactions.

Starting from linear equations for particle position and velocity, potential
temperature and stochastic equations for particle composition it was shown by
Heinz and Schaller [7], that the coefficients appearing in these equations can be
chosen exactly consistent with the transport equations for the corresponding
Eulerian means and variances. Here a locally isotropic dissipation corresponding
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to Kolmogorov [8] and a pressure redistribution resulting in a return-to isotropy
according to Rotta's theory [9] are assumed. These Lagrangian coefficients are
determined in terms of a turbulent timescale, which can be related to gradients
in the mean velocity and temperature fields. Calculating these fields within the
solution algorithm from Pope [6], the equations are given in a selfconsistent
form. As a consequence, Lagrangian equations are derived so that consistency
between the Lagrangian and Eulerian picture concerning the first two moments
is guaranteed exactly. Because of the approximations of Kolmogorov and Rotta
the equations for particle motion and potential temperature are linear. It is
investigated in Heinz and Schaller [10, 11] in which way non-linearities and
non-Gaussianity can be taken into account.

The topic of this paper is to show, how buoyancy effects and chemical reactions
can be handled in the Lagrangian framework. In the next section the Lagrangian
equations for particle motion, particle potential temperature and composition
are represented. Due to the above mentioned approximations parameters
appear, which characterize the ratios of timescales for the different processes
considered. The estimation of these parameter values is shown in the following
section. On this basis the influence of variations in the ratios of the timescales of
the different processes can be studied.

LAGRANGIAN MODELS

Within the Lagrangian framework the flow is considered to consist of a certain
number of fluid particles, each representing a constant mass (the sum of
changing partial masses). The (time dependent) total mass is determined by the
single particle mass multiplied by the (time dependent) total number of particles.
Hence, equations for particle properties like position, potential temperature and
mass fractions of chemical components have to be derived in correspondence
with Eulerian budgets.

Thomson [2] gave a theoretical basis for the derivation of a nonlinear stochastic
differential equation for particle motion. More recently, van Dop [4, 5]
proposed a linear equation for particle potential temperature and discussed
some problems in applying stochastic differential equations for scalar transport.
Using this approach here, linear coupled stochastic differential equations for
particle motion and particle potential temperature are proposed. Consequently,
the equations for particle position x;(t) and velocity U, (t) at the time t read for
the i-th component (i = 1, 2, 3, with summation over repeated subscripts),

d . .
EIXL'(t) =U,'(t), (1a)
-:—tULi(t) ={a)+ G‘j(ULj - Uj) +G'(0, -0) + b‘j%’i, (1b)

where <a>, G%, G' and b are unknown coefficients and the subscript L refers to
a Lagrangian quantity. The particle motion is coupled with the particle potential
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temperature @, and U' as well as © denote ensemble averages (U’ = <U;>, @ =
<0®;>) of the corresponding Eulerian quantities (subscript E) depending on x
=x;(t) and t. The first three terms give the systematic particle motion, whereas
the last one describes the influence of a stochastic force characterized by the
white noise dW! /dt, which is a Gaussian process having a vanishing mean and
uncorrelated values at different times,

dW'
<T>—0, (28)

<d—wi(t) (t' )>=6ij d(t—t'). (2b)

Here, 6ij represents the Kronecker delta and d(t-t') the delta function. In
addition, the stochastic equation for the potential temperature of the particle
reads

3@, (1) = (a,) +S, + G, (U, = U') + G, (©, —0)+b, ¥ (3)

dt dt’
where the coefficients <a,>, G, G, and b, have to be determined, S, being a
source of loss or gain of potential temperature and dW / dt corresponds to one
component of dW' / dt. The fluid volume has a total mass M(t), and the time
depending number of particles N = N(t) is calculated by

N() =40, @

Am ’

where Am is the constant mass associated with each particle.
The changing of composition is desribed by a mixing model proposed by Pope
[6], avoiding problems related with the application of a stochastic differential
equation for this process. According to that, with probability 1-N At/t_ in a
time interval At the compositions of all stochastic particles n=1, N do not
change, but with probability N At/t_, the compositions of a pair of particles
changes. Therefore, for two particles (selected at random and denoted by p and
q) their values M, and M,? are replaced by the common mean. This model
can be written in the following way:
¢ with probabiliy 1-N At/t_,

M, "(t+dt) =M, () +((a,) +S,)At, n=LN, (52)

® with probability N At/t_,

M;"’(Hdt)=%(ML‘P’(t)+M,}‘“(t))+(<am>+sm)m, n=p,q (5b)

M, @ (t+dt)=M,(t)+({a, )+S,)At, n#p and n=#q, (5¢)
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1, being the mass fraction timescale to be determined and a_ and S | are vectors
(with elements a_°, S_° o = 1, k) which have to be determined or given as
source for loss and gain of substance analogous to S, respectively.

At fixed positions x the Lagrangian budgets have to be in accordance with
Eulerian theory. To investigate these balances a mass density function

F(U,M,0,x,t)

notifying the probability to find values of the velocity, composition and potential
temperature at the position x and to the time t between

U+dU,M+dM,0 +dO
is introduced which is normalized to the mean fluid density <p(x,t)>,
J[F(0,M,6,x,t) ddMd6 =< p >. (6)

For F a transport equation can be derived [7], which reads

OF 9 [a,
3 ax{ F}+ {SaF}+ {SF}—

—-a%{[(a*HG‘j(fJ" —Uj)+G‘((:)—®>]F}—

—%{[(a(,> +6, (0 -u)+G,(0- @)]F} N

. 19y ,

——{BF}+=——{b, F}-

+ o907 B 5560 b «

+21 " 2de1\7[' p(M)~F(M+M')'F(M_M‘)—F}, (7)

p(M+M') p(M-M")
where
|
Bn_]=_ lkbk'].

Sb (8)

Hence, a closed equation is obtained for the mass density function F. Solving it,
all Eulerian moments and correlations of the quantities considered can be
calculated by integration, for instance

Ui(x,t) = p-'mdfdedé) UF0,M,0,x,t),

or the elements V¥ of the variance matrix V,
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Vij(x’t) = ((]Jrl _Ui)(UEj —Uj)> =
= p-‘mdﬂdeé (U = U0 = UHEU.M,0,x,1).

On the other hand, budget equations for the the first and second moments of the
quantities considered can be calculated by multiplying (7) with the
corresponding variables and integrating over the whole variable space.

CALCULATION OF LAGRANGIAN COEFFICIENTS

The coefficients appearing in the Lagrangian equations (1b), (3) and (5a-c) can
be obtained by comparison of the transport equations for the means and
variances calculated as described above from (7) with the corresponding
averaged hydrodynamic equations, where the approximations of Kolmogorov
[8] of locally isotropic dissipation and a pressure redistribution according to
Rotta [9] are assumed. This leads to (without summation over o in (9b))

(ai)=vAin—p"§<—P>-—g6m (9a)
ox'

(am“) =-AA M, (9b)

(agy=—A, A, O, (9¢)

for the coefficients <a®>, <a >, <a,>. Here, the Eulerian mean value M, =
<M, > is introduced, <p> is the averaged pressure, g the acceleration due to
gravity, v being the kinematic viscosity and A,, A, are molecular transport
coefficients. From the equations for the second moments it follows that

5

== (20 W ok L v -Lp, v
3 41 *

47 3
+k2%2(-gg—:+aa—ii)v“k", (10a)
G' =Bgd,. (10b)
G, = _2k* Gy (10c)
4z
G, =0, (10d)
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Co=—", (11a)

C, =2(k,—k,)—k,. (11b)

Here, constant parameters k,, k,, k,, k, appear caused by the approximations of
Kolmogorov and Rotta. Providing that the transport of scalar correlations
depends only on the turbulent properties of the medium leads to

. (12)

" T

where the introduced k,” is equal to k, if A, = A, i. e. the coefficients for the
transport of potential temperature and substance o must be equal.
Consequently, all coefficients are determined completely, using the introduced
turbulent timescale t. The latter can be calculated using second-order modelling,
where the triple correlations in the second order moment equations are
neglected and the flow is assumed to be in a steady state. In Heinz and Schaller
[11] it is shown, that these assumptions are equivalent to a coarser rescaling of
the equations considered. For simplicity, a vertical sheared horizontal wind is
prescribed, so that

T* = (-B-B"—4AC) (13)

T 2A
follows for
au' Y (au?Y
T=T\K6X3) +(8x3)' (14)
Here,

A= %(41(4 +3k, +kk,Ri(Ri - Ri,),

4 _
B= g1(11<3[(7k4 +3k, +kk,)Ri —kk, %—2—}

1
C =k, ’k;’k,,
and Ri is the gradient Richardson number defined by

00
Bg P

' Z( U\
ox> ox’

Ri=
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Furthermore, the critical Richardson number Ri_ is given by

Ri = (6 =2k —ky)
¢ 4k, +3k, +kk,

limiting the applicability of (13) to Ri <Ri..
ESTIMATION OF PARAMETERS

The estimation of the constants k, - k, is considered in detail by Wichmann and
Schaller [12]. The values of Mellor and Yamada [13] for k,, k., k;, k,,

k, = 6.0,
k, =0.08,
k,=7.5,
k, = 1.66,

seem to represent the most general constants [12]. One obtaines the universal
constants C,, C, of Kolmogorov theory as

c, =13,
C =5.7.

Comparisons with values obtained by other authors can be found in Heinz and
Schaller [7,10]. In particular, for the ratios of timescales of transport of
potential temperature to that of kinetic energy 1,/ 1=~ G, / T follows

T 4

2= =044,
T 2k, -k,
whereas (13) with Ag = A leads to
ol o060
T k

CONCLUSIONS

Starting from linear coupled stochastic differential equations for particle motion
and potential temperature as well as a stochastic mixing model for changes of
compositions it is shown that the coefficients appearing in the Lagrangian
equations can be chosen in accordance with the Eulerian transport equations up
to the second order. Here, a timescale T appears wich can be related with
gradients of the wind- and potential temperature fields. Values for the remaining
unknown parameters k,, k,, k;, k,, are given above. This consistent approach to



S@_ Transactions on Ecology and the Environment vol 3, © 1994 WIT Press, www.witpress.com, ISSN 1743-3541
i32 Computer Simulation

incorporate buoyancy effects and chemical reactions into Lagrangian modelling
of turbulent diffusion provides a suitable basis to study the influence of ratios of
the timescales for turbulent transport, transport of potential temperature and
substances.
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