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ABSTRACT

Linear Lagrangian equations for turbulent motion and buoyancy are shown to
be consistent with the Eulerian budget equations for the mean wind and
potential temperature fields and their coupled variances. These equations take
reference to a locally isotropic dissipation according to Kolmogorov theory and
a return-to isotropy pressure redistribution according to Rotta. They permit a
selfconsistent calculation of the flow in dependence on three dimensionless flow
numbers. These flow numbers are the Prandtl number under neutral
stratification Pr, the critical gradient Richardson number Ri, and a new
introduced number Ri, The timescale of turbulent motion normalized to the
vertical sheared horizontal mean wind is calculated within this approach in
dependence on the gradient Richardson number. The calculation of means fields
can be included into the solution algorithm. Nonlinear equations can be derived
using different concepts. They provide two relations between Pr, Ri_ and Ri, for
homogeneous turbulence. Using these relations different measurements provide
in dependence on Pr in a very good agreement the same critical Richardson
number of Ri, = 3 / 10. Taking this value as a third relation one obtains Pr = 1
and Ri,=1/10.

THE LAGRANGIAN APPROACH

In the Lagrangian approach a turbulent flow is regarded as a whole of fluid
particles each having a constant mass. In correspondence with hydrodynamics
equations have to be derived for the motion of these particles and their
properties like for instance a potential temperature or a chemical composition.
In this way, the flow can be calculated matched on inhomogeneous terrain and
around obstacles, which may be related with considerably problems in other
approaches. Correspondingly, this Lagrangian approach is very convenient for
describing turbulent diffusion in complex flows and near sources [1]. Whereas
concepts are given for the description of particles dynamics, the inclusion of
buoyancy effects and chemical reactions was in discussion over a long time. As
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shown by Heinz and Schaller [2, 3] linear equations for particle motion and
buoyancy can be derived which are consistent with the Eulerian budget
equations for the mean wind and potential temperature fields and their coupled
variances. These equations permit a selfconsistent calculation of the flow in
dependence on three dimensionless flow numbers. Chemical transformations can
be included into this description. Using different concepts nonlinear equations
can be derived, which permit the calculation of these flow numbers [4].

LINEAR THEORY

Lagrangian stochastic equations can be used as approximations of the
hydrodynamic equations for high-Reynolds number turbulent flows. These
equations for fluid particle motion and particle potential temperature have to be
derived in correspondence with hydrodynamic theory. This can be guaranteed
up to second-order comparing the transport equations for the mean values and
variances of the considered quantities [2]. Here, the variance equations are
taken in the approximations of Kolmogorov and Rotta, that means a locally
isotropic dissipation and a return-to isotropy are assumed. The coefficients
appearing in the Lagrangian equations are calculated in terms of a turbulent
timescale t and closure parameters k,, k, and k, arising from the above
assumptions. The turbulent timescale can be related with gradients of the mean
wind and potential temperature fields by a rescaling procedure, and the closure
parameters k,, k, and k, can be related with dimensionless flow numbers [3].
These equations are selfconsistent, because the calculation of mean quantities
and varnances can be included into the solution algorithm. As only remaining
parameters three dimensionless flow numbers appear, the Prandtl number under
neutral stratification Pr, the critical gradient Richardson number Ri, and a new
introduced flow number Ri,.

Neglecting chemical reactions, each particle is characterized at the time t by its
position x, (t), velocity U, (t) (vectors with components x,'(t) and U, '(t), where I
=1, 2, 3 and the subscript L denotes a Lagrangian quantity) and potential
temperature ©,(t). Combining particle velocity U, (t) and @ (t) to the 4-
dimensional vector Z,(t) = (U (t), ©,(1)), these equations read

%xﬁ(t) - 7,'), (1)
4oy = taiy o Gi(Z I — (7 3 y AW’
E{ZL (t)=4")+GY(Z,'—(ZS))+b i (1b)

where the small superscripts run from 1 to 4 in difference to capitals and
summation over repeated superscripts is assumed. The first two terms in (1b)
give the systematic particle motion with unknown coefficients <a> and G%,
where the ensemble average is denoted by <--> The ensemble averages of
Eulerian quantities (subscript E) are estimated at fixed positions x which are
replaced by x = x;(t) in the equations. The last term of (1b) describes the
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influence of a stochastic force, characterized by the white noise dW’ / dt and an
intensity matrix b with elements b¥ Here, dW’ / dt is a Gaussian process having
a vanishing mean and uncorrelated values to different times, <dW'/ dt> =0 and
<dW'/ dt (t) - dW?/ dt (t')>= 8, 8(t - t'), §; denotes the Kronecker delta and
8(t — t') the delta function. Instead of considering the equations (1a-b) for the
stochastic transport of particles and their changing properties, the equivalent
Fokker-Planck equation can be considered for the probability density to find
given values of particle properties at given locations and times. The Lagrangian
joint mass density function will be denoted by F,. This function is similar to the
corresponding probability density function, but normalized to the mean
concentration <c(x, t)> of observed particles,

[z F (Z,x,0)= (e(x,1). (2)

The transport of F, can be derived by different methods and is given in
correspondence with (1a-b) by the equation

R e T

- BYF
o oz’

A A

3)

where BY = 1/2 b* b¥ is introduced. Assuming a state-independent and locally
isotropic dissipation according to Kolmogorov theory, BY is given by

Cq” O 0 0

1] 0 Cgq O 0
= ° 2 > (4)

41| 0 0 Cuq 0

0 0 0 CUZ—(ZH)

where C, and C, are unknown universal constants, q” is twice the turbulent
kinetic energy, that means q* = <(Z,' — <Z,>) (Z;' — <Z,’>)>, and 1 is a
turbulent timescale. By F, the statistical properties of an ensemble of observed
particles (that means distinguished in some way, for instance emitted by a
source) are determined at a single point. Considering the motion of all fluid
particles, the corresponding mass density function is denoted by the (Eulerian)
mass density function F, normalized to the averaged fluid density p,

jdz F(Z,x,t) = {p(x,1)}. (5)

This mass density has to fulfill the transport equation (3), too. This relation of F
with the unknown coefficients <a™> and G¥ can be used for deriving consistency
constraints between these coefficients and Eulerian means and variances of the
velocity and potential temperature fields. Multiplying (3) with Z' and integrating
over Z, the transport equations for the mean values of the wind and potential
temperature fields can be derived, so that <a>> is determined by
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D{Z; ) N vt
Dt ox'

where the abbreviation D/ Dt = 8/ ¢t + &/ &x™ - <Z,> is used and the matrix
of second moments of the coupled wind and potential temperature field is
written by

=(a"), (6)

@'y @W'u?) W'’y W'e)
Wy Wty Wy W)
@) (w’y (') @W'e) [
du') (Bu’) (BL’) (O

(7)

with 24 = Z,* — <Z,*> for the fluctuations. Accordingly, by multiplication of (3)
with Z' Z' and integration over Z, the transport equations for the second
moments can be derived which read

DV?

-+1(Z,,Z.) = G*VY + G*VM + C,q’ 5. — C,q -Cv*
Dt i 27 O

21

3.8,  (8)

where a source of loss or gain of potential temperature is neglected for
simplicity and the operator (X, Y;) is used (X;, Y; are any Eulerian quantities
and x = X; — <X;> and y = Y; — <Y > are their fluctuations) with

HXy)

0
I(X;, Y )= -
( E E) 8)(1\ axK

aéXYE 24 (z"y)

These equations (6) and (8) had been compared by Heinz and Schaller [2] with
the corresponding Eulerian budget equation of first- and second-order. Using
the Boussinesq approximation and the incompressibility constraint, 67~ / ox* =
0, the conservation equations of momentum and potential temperature read

bz, &z ez ' o
R v rw L i w
~g(1-B(z,' — )5, (9)

where D / Dt = @/ 6t + 8/ ox* - Z.*, v is the kinematic viscosity, o the
coefficient of molecular heat transfer, § the thermal expansion coefficient, p the
pressure and g the acceleration due to gravity. Consequently, <a™> is determined
by the averaged right-hand side of (9),

3z}
KaxK

>zt )5
oxRox® S

5<p>

(a)=v +(a—-v) (" ki ~ 804 (10)
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Assuming a locally isotropic dissipation according to Kolmogorov and a return-

to isotropy pressure redistribution according to Rotta, transport equations of
second-order can be derived from the conservation equations leading to

pvi o k k,—k .
Dt +UZ.,Z") = {_4_; x T 21 28,8, +Bg5i38k4}VkJ +
k k, -k . HZ.L)
+{’ Zj;ajk + ]2'5 . 8j48k4 +Bg6j35k4}vk + kzq2 GX; [aLisKj +6Lj6Ki] +
Q¢ k-2 (k,—2)/3-q> - (2k, - 2k, - k,)V*
R S 5, — 1 3 A1 0.0, (11)
2t 3 Y 21 A

where the closure parameters k,, k,, k, and k, are introduced. The equations
(11) are consistent with the derived transport equations (8) for all variances V¥,
ifk,=0,C,=(k,-2)/3, C, =2k, — 2k, — k, and in particular the unknown
coeffient matrix G is chosen by

p k k, -k
GF= = L8+ 28,8, + Bebd, (12)
Hence, the coefficients <a'>, G’ and b¥ are given by the turbulent timescale T,
the first moments <Z.'>, the pressure gradient d<p>/0x"* &, and the closure
parameters k,, k, and k,.

TIMESCALE AND FLOW NUMBERS

Investigating the local solutions of (11), where all gradients of variances and the
third moments are neglected, the turbulent timescale T can be calculated in
dependence on the gradients of the mean fields [2], and the closure parameters
k,, k; and k, can be related with three dimensionless flow numbers [3].
Considering a vertical sheared horizontal wind field only, with the gradient
Richardson number Ri = Bg 0<Z,*> / 0x’ / [(0<Z,'> | OX°) + (6<Z,> 1 6x°)]
this relation for the timescale normalized to the vertical sheared horizontal wind
T=1[(0<Z;'> | &) + (3<Z,*> | 5x’)*]"” reads

8 k-2

P = TRi"[Ri" - Ri,"] = -[(1+Pr)Ri" - Pr'] -

—\/[(1+Pr*)Ri' ~Pr'] —4Ri"Pr[Ri* - Ri,’], (13)

where the abbreviations Ri* = Ri_/ Ri, as well as Pr" = Pr / Ri, - (k, — 2) / 3 are
used. This relation is valid for Ri <Ri and Ri, <Pr(k, - 2) /3 <(k, +7)/ 6 +[
(k, +7)* /36 + Ri]'">. Here, the abbreviations
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R‘ic :(k] _2)'(1(3 —k4)/(4k4 +3k1 +k|k4>
Pr=k,/k,,
Ri, =Ri_ -Pr/(k, /k, —1)

are used. Orientating the x'-axis into the mean horizontal wind direction, the
turbulent Prandtl number Pr, is defined by Pr, = (V" 6<Z.*> / ox°) / (V* 8<Z.'>
/ 0x%). Tt can be shown that Pr denotes the Prandtl number under neutral
stratification, so that this number can be estimated by the limit 6<Z.*> / x> —
0. The number Ri_ can be interpreted as critical Richardson number determining
the transition from laminar to turbulent motion, because the timescale relation is
valid only for Ri < Ri. The number Ri, was new introduced. Studying
consistency conditions of local solutions of the second-order equations it can be
seen, that this number limits the range of validity of the timescale relation to Ri
~ — Ri, [3]. This flow number is a global gradient Richardson number
characterizing a slightly unstable stratification. By these results closed equations
are given depending only on the three flow numbers, because the calculation of
the mean wind and potential temperature fields can be included into the solution
algorithm.

CHEMICAL TRANSFORMATIONS

The changing of composition is desribed by a mixing model proposed by Pope
[5], avoiding problems related with the application of a stochastic differential
equation for this process. According to that, with probability 1-N At / 1 in a
time interval At the compositions of all stochastic particles n = 1, N do not
change, but with probability N At / T_, the compositions of a pair of particles
changes. Therefore, for two particles (selected at random and denoted by p and
q) their values M,® and M, @ are replaced by the common mean. This model
can be written in the following way:

o with probabiliy 1-N At/ t_,
M, ®(t+dt) = M, (t)+(¢a,)+S,)At, n=1N, (14a)
o with probability N At / 1,

M, ®(t+dt) = % (ML(")(t)+ML('”(t)) +((a,y+S,)At, n=p,q (14b)

M, @ (t+dt) =M, “(t)+((a,)+S )At, n#p and n=q, (14¢)

7, being the mass fraction timescale to be determined and a_ and S_ are vectors
with elements a_*, S_% where o = 1, k runs for the different mass fractions,
which have to be determined or given as source for loss and gain of substance.
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Let us assume in formal correspondence with the above closure assumptions
leading to (11)

om
o () )

where m,, denotes a mass fraction fluctuation, A is the coefficent of molecular
composition transfer and k" is a closure parameter taking on the role of k,. For
the timescale of mixing t_ one obtains

T, =75 (15)

if it is assumed that the transport of composition can be considered as similar to
that of the other scalar quantity, that means the potential temperature.

NONLINEAR THEORY

Nonlinear equations can be obtained using concepts of the theory of stochastic
processes and of nonequilibrium statistical mechanics, where the potential
temperature is included to describe buoyancy effects [4]. Within the former one
approach nonlinear Markovian equations can be derived in dependence on the
distribution function of turbulent fluctuations. Assuming a locally Gaussian
distribution of wind and potential temperature fluctuations, an equation can be
derived which is quadratic in the fluctuations. The limits of applicability of this
equation can be assessed investigating the influence of non-Gaussianity [6]. On
the other hand, using the second one approach a more general equations
including non-Markovian effects can be derived. Studying these equations for
homogeneous turbulence for the C, and C, the relations C;=2/3,and C, =2k,
can be found. Hence, using the above relations of C; and C, with k,, k; and k,,
these parameters can be calculated for instance in dependence on k., or the flow
numbers in dependence on Pr. In doing so it is found that all measured values of
Ri, are very near

3

Ri, = —,
10

(16a)
where the deviations are smaller that 6%. Taking this value into account, the
flow numbers can be estimated for homogeneous turbulence to be

Pr=1, (16b)
1

-1 (16¢)

0
These values can be used to calculate the second-order closure parameters k;,, k;,
and k,, for which many different values had been found in dependence on the
determination method.
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CONCLUSIONS

Closed linear equations for particle motion and potential temperature are given
depending only on three dimensionless flow number. For these the values (16a-
c) are found for homogeneous turbulence. More general nonlinear equations can
be derived as described above. These equations can be applied to calculate
turbulent flow and dispersion of substances over inhomogeneous terrain, near
sources and obstacles. The asymmetry of the distribution of turbulent
fluctuations as well as of the dispersion coefficient matrix can be investigated.
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