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Abstract
Large-eddy simulations are widely used to study flows in the atmospheric boundary layer. As
atmospheric boundary-layer flows of different atmospheric stratification have very different
flowcharacteristics on different length scales,well-resolved simulations of theseflows require
very different meshes. The Parallelized Large-Eddy Simulation Model combined with a
realizable dynamic subgrid model is used to identify the best method for evaluating the
resolution requirements for boundary-layer flows simulated by large-eddy simulations. In
particular, we consider three atmospheric boundary-layer set-upswith different stratifications
(stable, neutral, convective) to investigate how the quality of the simulation changes with the
grid resolution. By following the work of Davidson (Int J Heat Fluid Flow 30(5):1016–1025,
2009), the results are examined using criteria such as the convergence of mean profiles, the
ratio of modelled and resolved turbulence kinetic energy, and the two-point correlation. We
conclude that the two-point correlation is the best measure to evaluate whether the resolution
demands for a specific flow are fulfilled.

Keywords Boundary-layer flows · Dynamic subgrid model · Large-eddy simulation ·
Atmospheric stratification · Two-point correlation

1 Introduction

Large-eddy simulation (LES) is a powerful tool for the investigationof atmospheric boundary-
layer (ABL) flows (Mason 1994; Porté-Agel et al. 2000; Kosović and Curry 2000), such as
flow downstream of wind turbines and within wind farms in both neutral and non-neutral
stability (Calaf et al. 2010; Porté-Agel et al. 2011; Witha et al. 2014; Abkar and Porté-Agel
2015; Dörenkämper et al. 2015; Vollmer et al. 2015), and the flow above urban areas of very
complex topology (Letzel et al. 2008; Park et al. 2012).

The LES approach aims to explicitly resolve the large-scale motions of the turbulent
flow, while modelling the sub-filter motions. As the discretization and subgrid-scale-model
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errors increase with decreasing resolution (Chow and Moin 2003; Meyers et al. 2007), the
resolution is chosen to be fine enough to minimize these errors, with the size of the simulated
domain large enough to contain the relevant boundary-layer structures. As the need for a
large domain and the importance of properly resolving the physical processes may imply
very high computational costs, a preferably coarse but sufficiently fine resolution is desired.

The characteristics of a typical ABL flow strongly depend on the heat flux at the lower
boundary of the model domain, and thus on the stability (Garratt 1994). Surface heating
results in rising plumes, large turbulent structures in the flow, and a thick boundary layer,
while surface cooling inhibits vertical movement, causes smaller turbulent structures, and
thin boundary layers. Hence, the necessary resolution for capturing the large-scalemotion can
be fundamentally different for different stratifications, even for similar boundary conditions,
such as the topographyor the presence ofwind turbines.Manyhave investigated the resolution
requirements for LES models in general (Celik et al. 2005; Klein 2005; Celik et al. 2006,
2009; Davidson 2009; Gant 2010; Sullivan and Patton 2011; Xiao et al. 2014), suggesting
measures of resolution including the fluid viscosity, but these are not applicable to boundary
layers of infinite Reynolds number (that neglect the viscosity of the air). More specific LES
investigations of the boundary layer have been performed, for example, by Beare et al.
(2006), who compared several models of different resolution in stable stratification, and used
the convergence of the mean statistics as the main criterion for the quality of the simulations.
The sensitivity of the convective boundary layer to the LES grid resolution has been addressed
by Sullivan and Patton (2011), who found that the majority of low-order-moment statistics
become independent of the grid resolution when zi/Δ > 60, where zi is the height of the
convective boundary layer (inversion height) and Δ is the size of a grid cell. Furthermore,
they observed that the growth of the boundary layer is a sensitive measure of the LES solution
convergence, since it becomes grid independent when the entrainment region is sufficiently
resolved. A general and widely-used method to estimate the quality of LES results was
introduced by Pope (2004), who suggested that the resolved turbulence kinetic energy (TKE)
should be more than 80% of the total TKE to enable a well-resolved simulation. Matheou and
Chung (2014) recommend resolving at least 90% of the TKE for the reliable prediction of
the mean statistics. Geurts and Fröhlich (2002) suggested using a subgrid-activity parameter,
which Celik et al. (2005) showed was insufficiently sensitive to be used as an assessment
parameter. Davidson (2009) described several methods for evaluating the resolution of an
LES model coupled to an unsteady Reynolds-averaged Navier–Stokes model near the wall
of a fully-developed channel flow at a Reynolds number Re = 4000. He investigated the
influence of the resolution on several measures, and concluded that the two-point correlation
is the best method for estimating the required LES resolution in the case of a channel flow.

We evaluate here whether the two-point correlation is also a good measure for classifying
the LES resolution of ABL flows, which are assumed to have an infinite Reynolds number
(the viscosity of the air is neglected, with only the eddy viscosity taken into account). We
address the question of how to decide if the resolution of an LES model of the ABL is
sufficient by determining which is the coarsest resolution that still captures the relevant
physical processes without leading to a poorly simulated ABL flow. Our objective is to
identify a criterion for the assessment of the resolution of ABL flows, for which we expect
that a refinement of the resolution leads to a convergence of themean quantities and variances,
implying the simulation results no longer depend on any further refinement of the mesh
size.
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2 Model

All simulationswere performedusing theParallelizedLarge-EddySimulationModel (PALM,
version 4, revision 2351), whose detailed description is given by Maronga et al. (2015), and
is a model mostly used to simulate the ABL, but has also been used for oceanic flows (Noh
et al. 2010). The model has been used with very fine grid spacing in stable situations (Beare
et al. 2006), heterogeneously heated convective flows (Letzel and Raasch 2003), as well as
urban canopy flows (Park et al. 2012). The model governing equations are

∂ui
∂t

= −∂uiu j

∂x j
− εi jk f j uk + εi3k f3ug,k − 1

ρ0

∂ p∗

∂xi
+ g

θ − 〈θ〉
〈θ〉 δi3 − ∂

∂x j
τi j , (1)

∂u j

∂x j
= 0, (2)

∂θ

∂t
= −∂u jθ

∂x j
− ∂

∂x j
τθ j , (3)

where the indices i, j, k ∈ 1, 2, 3 and the summation convention is used, ui are the velocity
components at the locations xi , t is the time, and the overbar indicates a filtered quantity using
a filter width Δ. Implicit filtering is used, so Δ equals the grid-cell size; fi is the Coriolis
parameter, f = (0, 2Ω cos(φ), 2Ω sin(φ)), with Ω the Earth’s angular velocity, and φ the
latitude; ug,k are the geostrophic velocity components, ρ0 is the density of dry air, p∗ is
the perturbation pressure, θ is the potential temperature, and δi j is the Kronecker delta. The
tensor τi j = uiu j − ui u j is the subgrid stress, and τθ i = uiθ − uiθ is the subgrid heat flux.
The model equations are closed by determination of the subgrid stress τi j and the subgrid
heat flux τθ i , as described by Heinz (2008). The closure model was not part of the standard
PALM version. The deviatoric subgrid stress reads τ di j = τi j − 1

3τkkδi j (the superscript d
denotes the deviatoric part of a tensor), and is modelled as

τ di j = −2νt Si j , (4)

where νt is the subgrid-scale (SGS) viscosity, and Si j = 1
2 (∂ui/∂x j + ∂u j/∂xi ) the strain

tensor. The SGS viscosity is νt = c∗Δk1/2SGS , with c∗ dynamically calculated at each timestep,
and kSGS is the subgrid TKE. Following Germano et al. (1991), the test filter ΔT = 2Δ is
introduced in our case. The subgrid stress on the test-filter scale is then Ti j = ̂uiu j −̂uîu j ,
where the hat denotes the filter operation on the test-filter level, where Ti j is also unknown
since it includes unresolved parts of the flow. The difference between the subgrid stress
on the test-filter level and test-filtered subgrid stress is described by the Germano identity
Li j = Ti j − τ̂i j = ̂uiu j −̂uîu j , and can be calculated directly by application of the test filter
to the resolved quantities. The quantity c∗ is then calculated via

c∗ = − Ld
i j
̂S
d

i j

2νTt
̂S
d

lk
̂S
d

kl

. (5)

The closure scheme applied here uses the prognostic equation for the subgrid TKE

∂kSGS

∂t
= −u j

∂kSGS

∂x j
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[
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, (6)

where cε = 0.19 + 0.74l/Δ, and the length scale l = min(Δ, 1.8z,0.76
√
kSGS

(g/θ0∂θ/∂z)−1/2), and z is the height above the ground. Unlike other dynamic models,
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this formulation of the parameter c∗ is not derived using model assumptions for the subgrid
stress and the stress on the test-filter level, but is derived as a consequence of stochastic
analysis (Heinz 2008; Heinz and Gopalan 2012). Furthermore, the stability of the simulation
is ensured by using dynamic bounds to maintain c∗ values in the range

|c∗| ≤ 23

24
√
3

k1/2SGS

Δ|S| , (7)

as derived by Mokhtarpoor and Heinz (2017). This model does not need artificial clipping
for stable runs, and allows the occurrence of backscattering (negative values of νt ). For the
computation of the advection, the upwind-biased fifth-order-differencing scheme of Wicker
and Skamarock (2002) is used in combination with a third-order Runge–Kutta timestep
scheme.

The main difference to the LES model used by Davidson (2009) is the explicit treatment
of temperature, which means that buoyancy effects are taken into account. Furthermore, the
Coriolis term, which leads to a deviation of the mean flow direction in the boundary layer
from the geostrophic velocity above, is considered in the PALM model, but neglected by
Davidson (2009).

Lower boundary conditions are described by Monin–Obukhov similarity theory, which
assumes a constant-flux layer between the surface and the first grid level. The momentum
fluxes and the horizontal velocity components are then calculated as described by Maronga
et al. (2015). The horizontal boundary conditions are periodic.

3 Model Set-up

Since the characteristics of the boundary-layer flow strongly depend on the atmospheric sta-
bility, we consider simulations with three different stratifications (stable, neutral, convective),
and perform a set of several simulations with different resolutions for each.

3.1 General

Tables 1, 2, 3 and 4 present the simulation settings chosen based on previous work (Andren
et al. 1994; Noh et al. 2003; Esau 2004; Beare et al. 2006; Basu and Porté-Agel 2006; Lu
and Porté-Agel 2011; Sullivan and Patton 2011) to enable comparison with our results. As
measurements of turbulent quantities over the entire boundary layer are not available for a
direct comparison, we compare the results with Monin–Obukhov similarity theory and the
Townsend theory to assess the quality of our idealized set-up.

Table 1 Parameters for the different stratifications

Stratification Lx = Ly (m) Lz (m) Surface temperature/flux ug (ms−1) zi,0 (m)

Stable 600 300 −0.25Kh−1 8 100

Neutral 4000 1200 0.0Kms−1 10 1000

Convective 8000 2000 0.05Kms−1 10 1000

The lengths (Lx , Ly , Lz ) give the size of the computational domain. At the surface, there is either a time-
dependent temperature in the stable case or a fixed heat flux in the convective case, and zi,0 is the height of
the temperature inversion prescribed at the beginning of the simulation
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Table 2 Parameters of the stable simulations, where Δ is the grid-cell size, which is spatially uniform, nx , ny
and nz are the number of grid points in the x-, y- and z-direction, respectively, Tsim is the total duration of the
simulation, and Tavg is the time over which mean values are calculated

Name Δ (m) nx = ny nz Tsim (h) Tavg (h)

S1.25 1.25 480 480 12 1

S2.5 2.5 240 240 12 1

S5 5 120 120 12 1

S10 10 60 60 12 1

Table 3 Parameters of the neutral simulations

Name Δ (m) nx = ny nz Tsim (h) Tavg (h)

N2.5 2.5 1600 480 48 8

N5 5 800 240 48 8

N8 8 500 150 48 8

N10 10 400 120 48 8

N20 20 200 60 48 8

N40 40 100 30 48 8

See Table 2 for the description of the notation

Table 4 Parameters of the convective simulations

Name Δ (m) nx = ny nz Tsim (h) Tavg (h)

C5 5 1600 400 5 0.5

C8 8 1000 250 5 0.5

C10 10 800 200 5 0.5

C20 20 400 100 5 0.5

C40 40 200 50 5 0.5

C80 80 100 25 5 0.5

See Table 2 for the description of the notation

All simulations start with a neutral temperature profile (∂θ/∂z = 0)within anABL capped
by a strong inversion (∂θ/∂z > 0) to prevent unlimited growth. The convective ABL with
a strong positive heat flux elevates the inversion further so that the domain height for the
convective case is much larger than that for the stable ABL. Close to the upper boundary, the
flow is damped to prevent waves from being reflected downwards as described in Maronga
et al. (2015). The roughness length for all simulations was set to z0 = 0.1m.

The large-eddy turnover time is defined as τ∗ = zi/w∗ for the convective case and τ∗ =
h/u∗ for the neutral and stably stratified cases (Moeng and Sullivan 1994), where zi is the

inversion height, h is the boundary-layer height, u∗ = (u′w′2
0+u′w′2

0)
1/4 is the characteristic

velocity, and w∗ = [ g
θ0

w′θ ′
0zi ]1/3 is the convective velocity (the index 0 denotes surface

values). The simulation time Tsim and the time interval over which the variables are averaged
are chosen to give a spin-up time > 20τ∗ and averaging intervals > 2τ∗ for the stable and
convective cases. To remove inertial oscillations in the neutral case, we used a longer spin-up
time and a longer averaging interval, as in Andren et al. (1994), who used a spin-up time of
10 f −1 and Calaf et al. (2010), who used a spin-up time of 60τ∗.

123



184 H. Wurps et al.

For the estimation of the boundary-layer height in the stable and neutral cases, we fol-
low Kosović and Curry (2000) by defining h0.05 as the height at which the turbulent stress
decreases to 5% of its surface value, giving a boundary-layer height h = h0.05/0.95. For the
convective simulations, the inversion height zi is determined using the “maximum-gradient
method” described by Sullivan et al. (1998), which assumes zi is the height at which the
quantity ∂〈θ〉/∂z reaches its maximum value.

3.2 Stable Case

The set-up of the stable boundary layer is similar to the GEWEX (Global Energy and Water
Cycle Experiment) ABL set-up, used by Beare et al. (2006), Basu and Porté-Agel (2006), Lu
and Porté-Agel (2011) and others. At the lower boundary, the development of the temperature
is described by a cooling rate of−0.25Kh−1. The prescribed Coriolis parameter f = 1.39×
10−4 s−1 corresponds to a latitude of 73◦, and all simulations use a geostrophic wind speed
ug = 8ms−1. The initial profile of the subgrid TKE decreases linearly from 0.4m2 s−2 to
zero from the surface to a height of 250m.

3.3 Neutral Case

For the neutral case, we prescribed a geostrophic wind speed ug,1 = 10ms−1 as done by
Andren et al. (1994), Meeder and Nieuwstadt (2000), and Chow et al. (2005), which is also
comparable to the wind speed obtained at the boundary-layer top by Calaf et al. (2010),
Porté-Agel et al. (2000), and Bou-Zeid et al. (2004), although they simulated a pressure-
gradient-driven boundary layer without the Coriolis force. The domain size in the horizontal
direction was set to 4000m, which agrees with the domain considered by Esau (2004), but
larger than the domain considered by Brasseur and Wei (2010) and Calaf et al. (2010). The
boundary-layer height is around 1000m, and the Coriolis parameter was set to f = 10−4 s−1.

3.4 Convective Case

The convective simulationswere performed on a grid extending 8000mhorizontally, which is
larger than those used by Sullivan and Patton (2011) and Noh et al. (2003), but the boundary-
layer height is similar, yielding comparable flow conditions. A moderate kinematic heat flux
of 0.05Kms−1 is prescribed at the surface, which is equivalent to the setting of Noh et al.
(2003) and similar to the setting used by Khanna and Brasseur (1998). The geostrophic wind
speed was again ug = 10ms−1 and the Coriolis parameter f = 10−4 s−1.

For each of the three stratifications (stable, neutral, convective), several simulations with
different resolutions were run for unchanged domain size and flow parameters (see Table 2,
3, and 4). Thus, the differences in the results of runs for a specific type of stratification are
exclusively a result of the change in resolution.

4 Results and Discussion

We present the effects of grid size by first illustrating how the grid affects the mean flow
and turbulence variables, and then by analyzing how these grid effects are related to the flow
resolution as predicted by several resolution criteria.
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4.1 Mean Flow and Turbulence Variables

While the wind-speed profiles (Fig. 1) show only a moderate dependence on the resolution,
finer resolutions tend to produce lower wind speeds in the lower part of the boundary layer
in the stable and neutral cases. The convective case shows nearly no differences in the
lower boundary layer, but near the top, the kink in the profile is more pronounced for finer
resolutions. As the boundary-layer height is limited by a temperature inversion, the thermal
stratification at this altitude is actually stable. The height shown in Fig. 1 is normalized by
the boundary-layer height, so differences in the absolute height h are not visible. Usually,
finer resolutions tend to result in lower boundary-layer heights. The simulation S1.25 shows
a lower inversion height than the other stably stratified simulations. In the convective case,
the convergence of the inversion height is evaluated in terms of the resolution criterion below.

In the neutral surface layer, the relation (assuming a constant u∗ value)

∂U

∂z
= u∗

κz
(8)

where U is the wind speed, and when integrated gives the wind-speed profile

U (z) = u∗
κ

ln

(

z

z0

)

. (9)

To investigate whether this can be reproduced by the simulations, the dimensionless gradient

ϕM (ζ ) = ∂u

∂z

κz

u∗
(10)

is calculated from the simulation results. Figure 2 shows logarithmic plots of the normalized
wind speed as well as the dimensionless gradients of the neutral simulations, illustrating that
the value of ϕM does not deviate very strongly from unity for any of the resolutions. Above
the surface, the profiles of the dimensionless gradient grow to around 1.2 and then fall to 0.8 in
the layers above. This behaviour is evident in all profiles, whereas only the height of the peak
depends on the resolution, as observed by Brasseur and Wei (2010). Values of φ ≈ 1.2 were
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Fig. 1 Simulated wind-speed profiles of stable a, neutral b, and convective stratification c for different reso-
lutions (see the panel legends). ln(c), h = zi
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Fig. 2 Results from the neutral simulations showing (left) U/u∗ values with respect to the theoretical profile
U/u∗ = ln(z/z0)/κ , κ = 0.4, and (right) dimensionless gradient for different resolutions
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Fig. 3 Characteristic squared friction velocities u2∗ of the stable a, neutral b, and convective c simulations of
different resolutions

also observed in simulations with other models using a dynamic subgrid closure (Porté-Agel
et al. 2000; Brasseur and Wei 2010).

Profiles of the resolved shear stresses u′w′ and v′w′ (not shown) and the inferred square

of the characteristic velocity u2∗ = (u′w′2 + v′w′2)1/2 vary slightly with the resolution (see
Fig. 3). For stable stratification, all cases are similar, except for the 1.25-m-resolution case,
which may be the result of a smaller boundary-layer height for this case. The profiles of the
neutral simulations clearly show that the finer grids yield lower values of u∗. At resolutions of
10m and lower, the profiles converge. The profiles of the convective case show more erratic
behaviour, which may be caused by the relatively small averaging interval of 30 min, which
is probably not sufficient to fully average over the large eddies in the convective case. The
use of a larger averaging interval is not feasible because of the strong growth of the inversion
height.

The resolved TKE of the stable case is strongly influenced by the resolution (Fig. 4).
In a large part of the boundary layer, coarser grids imply a higher TKE, so it may seem
counterintuitive that the resolved TKE decreases with increasing grid resolution. Ideally,
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Fig. 4 Resolved TKE of the stable a, neutral b, and convective c simulations of different resolutions

the LES approach resolves a part of the total TKE, with the unresolved TKE modelled by
the SGS model. With a finer resolution, the resolved TKE should increase as the modelled
TKE decreases, while the total energy remains unchanged. However, in the stable case, the
modelled TKE decreases with a finer resolution, which was noted by Beare et al. (2006), and
an attempted explanation is given by Celik et al. (2005) in their Appendix B. According to
Celik et al. (2005), in wall-bounded flows, the resolved strain Si j becomes too small, which
leads to a small resolved dissipation ε = 2νSGS Si j Si j and a too high resolved TKE.However,
near the surface, finer grids show a higher TKE. The normalized profiles do converge (the
cases S1.25 and S2.5 behave similarly), but not regarding the absolute values of the TKE
(not shown). The difference between the absolute values for the cases S1.25 and S2.5 is
balanced by the surface values of u∗, which are lower for the S1.25 case than for the S2.5
case, as mentioned above. All three cases with different stability show that the TKE close to
the ground, where vertical motion is limited due to the proximity of the ground, is dependent
on the resolution of the computational grid. In all three cases, finer grids resolve more TKE in
this specific region. Moreover, in the convective ABL, the top part of the boundary layer also
shows a strong influence of the resolution on the TKE. Here, a capping inversion prevents
vertical movement, while the convective ABL is also well mixed with regard to the TKE in
the bulk of the convective ABL, which leads to a strong gradient of TKE at the top of the
boundary layer. To summarize,the convective ABL is affected by the grid resolution at both
the top and the bottom of the boundary layer.

According to the theory of Townsend (1980) and Perry and Chong (1982), the streamwise
turbulence intensity follows logarithmic functions of the distance from the wall in the inertial
region of a wall-bounded flow

u′2/u2∗ = B1 − A1 ln
( z

h

)

, (11)

which Marusic et al. (2013) show is valid for a large range of Reynolds numbers (see also
Marusic andHutchins (2008),Meneveau andMarusic (2013)).Measurements inwind tunnels
as well as in the ABL show a logarithmic behaviour of u′2/u2∗, which suggests a universal
(Townsend–Perry) constant of A1 = 1.25 (Marusic and Kunkel 2003; Smits et al. 2011;
Hultmark et al. 2012; Marusic et al. 2013), while the parameter B1 depends on the flow
conditions and geometry, which is also reproduced by LES models of wall-bounded flows

123



188 H. Wurps et al.

−4 −2
ln(z/h)

1

2

3

4

5

6

u
2 /

u
2 ∗

(a)

10 m
5 m
2.5 m
1.25 m

−4 −2
ln(z/h)

(b)

40 m
20 m
10 m
8 m
5 m

−4 −2
ln(z/h)

(c)

80 m
40 m
20 m
10 m
8 m
5 m

Fig. 5 Normalized resolved fluctuations of the u-component for the stable a, neutral b, and convective c
simulations as a function of ln(z/h) for different resolutions. All points between the second grid point above
the surface and the height 0.15h are shown. The dashed black line has a slope of −1

(Stevens et al. 2014). The derivation of the logarithmic law in Eq. 11 by Banerjee and Katul
(2013) using a spectral budget predicts that the value of A1 is not constant. Another derivation
by Katul et al. (2016) suggests a dependence of the value of A1 on the Reynolds number,
predicting A1 → 1 for Re → ∞. Moreover, the direct numerical simulations of Katul
et al. (2016) showed values of A1 < 1 (see their supplementary material). Consistent with
Marusic et al. (2013), we assume that the outer bound of the inertial region lies at 15% of
the boundary-layer height.

Nearly all of our simulations show a logarithmic region with slopes A1 ≈ 1 from the
second grid point above the surface (see Fig. 5). Below the second grid point, the turbulence
is not resolved well enough, so the resolved turbulence decreases when approaching the
surface. For the coarse simulations, there is either no data left (S10, C80) or only very little
data between the second grid point and the upper limit of the logarithmic region at z = 0.15h
(N40). The best agreement can be seen for the convective simulations (Fig. 5 c), where the
slope is close to unity in the whole inertial region. In the stable and neutral simulations, the
slope is not constant throughout the inertial region. After the third grid point, the slope is
mostly close to unity, but becomes smaller when approaching z = 0.15h, especially for the
well-resolved simulations.

4.2 Resolution Criteria Evaluation I: Turbulence-ResolvingMeasures

Before focusing in Sect. 4.3 on the use of two-point correlations as ameasure of the resolution,
we first consider the deficiencies of standard approaches.

The resolution ratio of the resolved to total TKE is defined as the parameter

γ = kres
ktot

= kres
kres + kSGS

, (12)

whose vertical profiles for all simulations are shown in Fig. 6. In general, the profiles start at
low values and approach a more or less constant value throughout the middle of the boundary
layer (more constant for finer resolutions). In the upper part of the boundary layer, the profiles
merge and reach γ = 1,whichmeans that, above the inversion, the value of kSGS tends to zero
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Fig. 6 The parameter γ describing the ratio of the resolved TKE to total energy of the stable a, neutral b, and
convective c simulations of different resolutions

faster than the resolved TKE kres . In the middle part of the boundary layer (approximately
from z/h = 0.2 to 0.8), the ratio is strongly dependent on the resolution, and the value of γ

is always higher for coarser grids than for finer grids. However, the value of γ is not constant
throughout the boundary layer, since it is higher near the surface and usually declines towards
the top of the boundary layer. For example, in the stable simulation with 10-m resolution,
the value of γ grows almost linearly with height. Also, the other coarse simulations N40
and C80 show a γ value growing with increasing height in the middle part of the boundary
layer. Hence, a threshold value can only indicate well-resolved parts of the simulation. For all
stabilities, the finer-resolution profiles are more constant in the middle part of the boundary
layer. At all heights, γ > 0.8, which is the suggested criterion for a well-resolved turbulent
flow according to Pope (2004). For the coarsest simulations, γ ≈ 0.95 in the middle of
the boundary layer, although these simulations are definitely poorly resolved. Based on the
well-resolved simulations, a better threshold would be γ ≈ 0.97 in the stable case, and
γ ≈ 0.985 in the neutral and convective cases, implying the parameter γ definitely depends
on the stability.

Apparently, the ratio γ depends on the SGS model. Celik et al. (2005) suggested a quality
index deduced from Eq. 12, but independent of the subgrid TKE kSGS , whereby instead of
using kSGS , which is computed by the model, only the resolved TKE of two simulations
with different resolutions are used to calculate the index via Richardson extrapolation. Nev-
ertheless, the application to our simulations reveals an inconsistency: depending on whether
a simulation is compared to a coarser or a finer simulation, the index yields quite different
values (not shown). Furthermore, the use of this index needs two simulations of different
resolution.

Another way of evaluating the resolution is through the energy spectra, which, according
to Kolmogorov’s theory of inertial turbulence, the spectral energy

E(k) ∼ u2∗d−2/3k−5/3, (13)

and is a function of the wavelength k, where d is a characteristic length assumed to be
proportional to the height above ground z. The part of the measured spectra that follows
the behaviour described by Eq. 13 is called the inertial subrange. Because of the different
resolutions, the spectra of our simulations extend over different wavenumbers (see Fig. 7
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where only the neutral simulation is shown, since the results are similar), and their shape
depends little on the resolution.Most of the spectra show an inertial subrange, which becomes
wider for the simulations of finer resolution, but there are no significant differences between
the spectra that would reveal the quality of resolution. Hence, as a criterion for the evaluation
of the resolution, the energy spectrum is not very informative.

Acriterion, especially for convective boundary layers,was proposedbySullivan andPatton
(2011), who suggest the convergence of the boundary-layer growth is a sensitive measure of
numerical convergence. For the estimation of the inversion height in the convective case, we
used the “maximum-gradient method”. At every position i , j (horizontal indices), the vertical
position of the maximum of the term ∂θ/∂z is determined, and then averaged. As shown in
Fig. 8, simulations with a resolution of 20m or smaller show a very similar inversion height,
which agrees with Sullivan and Patton (2011).

In addition, Sullivan and Patton (2011) showed that a daytime convective boundary-layer
convergence is reached if the ratio of the inversion height to the grid-cell size exceeds 60.
For our own well-resolved simulation C20, the ratio zi/Δ = 62. An exact evaluation of
the recommendation zi/Δ > 60 is not possible with our data—more simulations with only
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slightly different grid resolutions would have been necessary. However, our observation of a
converged simulation for a ratio of 62 does not contradict the findings of Sullivan and Patton
(2011).

4.3 Resolution Criteria Evaluation II: Two-Point Correlations

We show here how information on the LES resolution quality is obtained from an analysis
of the two-point correlations of the velocity components.

The two-point correlation of the u-component of velocity is defined as

Buu(x
∗) = 〈u′(x)u′(x − x∗)〉/σ 2

u , (14)

with other velocity-component combinations and directions are defined accordingly, and nor-
malized by the variance of the particular velocity component, giving Buu(0) = 1. Two-point
correlations are calculated from instantaneous values of the velocity fields (i.e., snapshots of
the flow, as presented in Fig. 10), with at least five snapshots taken at the end of each simu-
lation in intervals of 2000s, implying at least one large-eddy turnover time T between two
snapshots. To compute the two-point correlation in the streamwise and spanwise directions,
the grid is rotated in a way that the new x-component is parallel to the mean flow direction
at the height of the snapshot. The rotation angles were between 5◦ and 25◦. However, the
rotation has little influence on the results compared with the unrotated grids. Given that the
energy spectra of the velocity components are available, the two-point correlation can also
be computed via a Fourier transformation

Buu(n) = 1

σ 2
u

Nx−1
∑

k=0

Euu(k) cos

(

2π i
kn

Nx

)

. (15)

In our case, the energy spectra were calculated during the simulation and averaged over
intervals of 2000s to includemuchmore data thanwith the snapshots.Hence, in the following,
all two-point correlations are calculated from the spectra.

Figure 9 presents the two-point correlations of the u-component in the x-direction of all
stabilities, illustrating curves starting at one and approaching zero with increasing distance
x∗/h. The form of the two-point correlation may be used to determine the average size of the
structures of the velocity field and the number of cells needed to resolve these structures. As
in Davidson (2009), we assume grid points belong to the same structure for Buu(x∗) > 0.3.
The value of x∗ for which Buu(x∗) = 0.3 is defined as σ , which is one half of the average
size of structures in the flow, since Buu is an even function of x∗. The number of cells from
Buu(0) = 1 to Buu(σ ) = 0.3 is defined as nc, and specifies the number of cells resolving an
average structure. These quantities are connected by

σ = ncΔ. (16)

As the scale x∗ → ∞, Buu(x∗) is expected to approach zero, since, statistically, the velocity
structures should not be correlated over large distances. If the domain size is too small, the
two-point correlations may not decrease to zero because of the periodic boundary conditions.

The two-point correlations of the stable case in Fig. 9 show a very systematic behaviour.
When the grid resolution is refined, the quantity Buu decreases faster,meaning that the average
size of the turbulent structures σ , i.e., the intersection with the line Buu = 0.3, decreases with
the grid-cell size. Nevertheless, the number of cells bywhich themean structure is resolved nc
increases with a smaller grid-cell size. Figure 10 a, b, and c shows snapshots of the velocity
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Fig. 9 Normalized two-point correlation for an elevation of 100m of the stable a, neutral b, and convective c
cases for different resolutions

component u for stable stratification for the same timestep for three different resolutions,
clearly illustrating how the size of the structures increases with increasing grid-cell size. A
fundamental principle of the LES approach is that only the large eddies are resolved, and the
small eddies are modelled. The length scale σ that is deduced from the two-point correlation
can be understood as an average eddy size of the flow. When the grid-cell size is reduced,
then more of the smaller eddies are resolved, which should lead to a smaller value of σ . The
minimum σ value is reached when the grid-cell size reaches the Kolmogorov microscale.
Since an LES model does not resolve the small eddies, this minimum is not reached by a
well-resolved simulation.

The two-point correlations of the neutral case show a slightly different behaviour. Near
x∗/h = 0, coarser grids show higher correlations, as in the stable case. But while simulations
N40, N20, and N10 still behave similarly to the stable simulations, two-point correlations for
simulations N8 and N5 decrease to zero at a slower rate. Simulation N5 falls below 0.3 even
later than in simulation N8, which means that the average size of the turbulent structures
is reduced from simulation N40 to N10, and then grows again for the simulations N8 and
N5. A possible reason is that the refinement of the grid resolution enables the evolution of
long meandering features or streaks as were observed by, for example, Hutchins andMarusic
(2007), Hutchins et al. (2011) and Dennis and Nickels (2011). The two-point correlation in
the spanwise direction does not show this behaviour. The streaks can also be seen in Fig. 10 d,
e, and f. In the flow of the finest resolution, more small-scale details of the flow are evident,
but the streaks appear to be more pronounced and persistent compared with the coarser
simulations, which may temper the decrease in the two-point correlation in the direction of
the flow.

In the convective case, the curves are closer together (see Fig. 13). In the upper part, they
show a similar pattern as the other cases, i.e., smaller structures with finer resolution. But
at x∗/h ≈ 0.4, the curves merge, and are very similar for larger distances. The sizes of the
structures at the line Buu = 0.3 are in the range 0.43–0.52 h.

Figure 9 also contains a magnification of the upper parts (values between 0.8 and 1) of
the two-point correlations of all stabilities, illustrating that the behaviour of all curves is
similar, which means that coarser resolutions lead to larger correlations. It can be seen that
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Fig. 10 Snapshot of the u-component of velocity near 100-m elevation after the end of the simulation. The
panels a, b, and c show grid-cell sizes of 1.25m, 2.5m, and 10m of the stable simulation, respectively. The
panels d, e, and f show grid-cell sizes of 5m, 10m, and 40m of the neutral simulation, respectively. The panels
g, h, and i show grid-cell sizes of 5m, 10m, and 40m of the convective simulation, respectively. The numbers
in the panels represent the horizontal coordinates in metres

the upper parts of the curves converge as the resolution is reduced. Only in the stable case
does convergence not seem to be reached yet. The upper part of the neutral curves as well as
of the convective curves do not change much for resolutions ≤ 10m.

As the grid in our simulations is isotropic, the resolution is the same in all three directions.
However, the velocity components showquite different structure sizes for different directions:
The u-component in the x-direction usually shows the biggest structures, while the size of the
structures of the u-component in the y-direction, and of the v-component are a bit smaller.
The smallest structures are observed in the w-component, for which the structures in the
y-direction are a bit smaller than the ones in the x-direction. Since our grid is isotropic,
the smallest structures of the flow define how well the flow is resolved. When the smallest
structures of the flow can be considered well-resolved, then the treatment of all other velocity
components is even better. Hence, the number of cells by which the structures of the w-
component in the y-direction are resolved defines the quality of the simulation of the flow.

Figure 11a shows the two-point correlation of thew-component in the y-direction Bww(y)
for the stable case. The form in general is very similar to the form of Buu(x∗) in Fig. 9, though
decreasing faster, which means that the structures are smaller. The size of the structures for
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Fig. 11 Normalized two-point correlation Bww(y) at an elevation of 100m a, number of cells resolving the
dominant structures b, and the size of the dominant structures c, for the stable case
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Fig. 12 Normalized two-point correlation Bww(y) at an elevation of 100m of the neutral case a, number of
cells resolving the dominant structures b, and the size of the dominant structures c

the case S10 is σ ≈ 0.14h with nc ≈ 2.7. In Fig. 11c, the size of the structures σ/h is
plotted against the grid-cell size Δ/h (both normalized). As the relation between them is
approximately linear, they are connected via

σ

h
= α

Δ

h
+ β, (17)

for which linear regression yields α = 2.45 and β = 0.014. As mentioned above, the general
relationship between the number of cells and the size of the structure is nc = σ/Δ, which,
together with Eq. 17, leads to the relationship between the number of cells and the resolution

nc = α + β
h

Δ
. (18)

Figure 11c shows that this fit leads to an unambiguous relation between the parameters nc
and Δ, which enables us to predict very well the number of cells for which the smallest
structure of the flow is resolved for a specific resolution. Hence, when the number of cells
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nc is chosen corresponding to the w-structures in y-direction to be resolved, then Eq. 18 can
be transformed to obtain the necessary resolution by

Δ = hβ

nc − α
. (19)

Since we can estimate the quality of the simulations by the investigations in Sect. 4.1, we are
able to determinewhich resolution is sufficient for our set-up.Using the two-point correlation,
we can connect the quality of the simulation to a number of cells that are needed for a well-
resolved flow. However, the prerequisite to use Eq. 19 for the estimation of a necessary
resolution is to know the values of α and β.

In the stable case, it is unclear if even the simulation with Δx = 1.25m can be considered
well-resolved, because, although the normalized values of the TKE seem to converge, the
absolute ones do not. In addition, the two-point correlations do not seem to have converged,
which indeed may not be necessary for a good simulation, as justified above. It would be
interesting to investigate how the two-point correlation evolves with a further refinement of
the grid, but this would become computationally very expensive, as simulation S1.25 already
required a considerable computational time of 23 h on 1600 nodes. Halving the grid-cell size
would increase these requirements by a factor of eight. Stoll and Porté-Agel (2008) used a
similar set-up, and concluded that satisfactory results can be achieved for a grid-cell size of
6m or less. Beare et al. (2006) concluded that “a grid length of 3.125m or less is ideal for a
robust LES of this moderately stable regime”. Our results suggest that, rather, a grid length
of 2.5m or less is required, since with a coarser resolution, no inertial range is visible in
the spectra. The resolution of 2.5m corresponds to Buu(x∗) and Bww(y∗) structures that are
resolved by 11 and 3.5 cells, respectively.

The two-point correlation Bww(y) of the neutral case appears very different from that
of the u-component in the streamwise direction Buu(x∗) (Fig. 12), being more comparable
to the stable case with a clear tendency to smaller structures with finer resolution. Hence,
the relation between the parameters σ and Δ is again quite linear, with the linear regression
yielding α = 1.76 and β = 0.0176.

According to the convergence of the wind-speed profiles, the neutral simulation is suffi-
ciently resolved at a grid-cell size around 10m, which corresponds to Buu(x∗) and Bww(y∗)
structures that are resolved by 18 and 3.6 cells, respectively.

For the convective case (Fig. 13), the values of Bww(y) appear similar to the stable and
neutral cases, but the variation of σ with Δ shows that the finer resolved simulations deviate
from a linear relation. This effect is similar to the one we observed for the u-component in the
x-direction: a refinement of the grid leads to smaller structures in the flow until a certain limit
is reached, when the size of the structures remains unchanged or even starts to grow again.
Excluding the simulations C8m and C5m results in a linear relation between the parameters
σ andΔ for the other simulations, with α = 2.1 and β = 0.028. As the subsequently derived
relation between the parameters nc and Δ underestimates the number of cells for the finer
resolved simulations (see Fig. 13c), the procedure using Eq. 19 can still be used to estimate
a lower limit of the grid-cell size to obtain a certain number of cells.

The convective simulations already converge at a resolution of 20m, while in the TKE
profiles, and the two-point correlations, this can also be seen in the convergence of the
boundary-layer growth. The resolution of 20m corresponds to Buu(x∗) and Bww(y∗) struc-
tures that are resolved by 40 and 3.7 cells, respectively.

Table 5 shows an overview of some parameters characterizing the flow, as well as the
values for α and β that describe the connection between the resolution and the size of the
structures in the two-point correlation Bww(y). Although the flows are quite different, the
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Fig. 13 Normalized two-point correlation Bww(y) at an elevation of 100m of the convective case a, number
of cells resolving the dominant structures b, and the size of the dominant structures c

Table 5 Parameters of the regression of the structure size σ with respect to the grid-cell size Δ, and other
parameters characterizing the simulation

Stability α β h (m) u∗ (ms−1) w′θ ′
0 (kms−1) R f

S 2.45 0.014 190 0.27 −0.012 0.2

N 1.76 0.018 1020 0.43 0.0 0.0

C 2.1 0.028 1250 0.53 0.05 −0.8

values for α and β are similar, with α ≈ 2, and the value of β seeming to increase with
the boundary-layer height h. However, the three different simulations presented here do
not provide enough data to derive a general dependence of the coefficients α and β on the
parameters listed in Table 5.

In summary, the simulations that we consider well-resolved have resolutions of 2.5m
(stable), 10m (neutral) and 20m (convective). Their average Buu(x∗) structures are resolved
by 11, 18, and 40 cells, respectively, while their average Bww(y∗) structures are all resolved
by 3.5, 3.6, and 3.7 cells, respectively. It is noticeable that the largest structures of the well-
resolved simulations of different stabilities are resolved by a very different number of cells,
while the smallest structures are resolved by around 3.6 cells.

5 Conclusions

We used an LESmodel to investigate the influence of the grid resolution on simple inversion-
topped ABL flows for three different stratifications. The simulations were performed using
the model PALM, which was amended by a dynamic subgrid model with dynamic bounds.
Each of the stratifications was simulated several times with at least four different resolutions.
The wide range of resolutions ensured that we had both poorly-resolved and well-resolved
simulations for each stratification. To determinewhether a simulationwith a certain resolution
is well resolved, we used the profiles of the mean variables, the TKE, the turbulent stresses,
and the spectra. From this overview, we identified those simulations that can be considered
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well resolved, and these correspond to grid-cell sizes of 2.5m, 10m, and 20m for the stable,
neutral and convective simulations, respectively. On this basis, we checked if commonly-used
criteria for the LES resolution agree with these findings, and assessed the resolution of our
simulations appropriately.

Throughout the boundary layer in all simulations, the ratio of the resolved energy to the
total energy γ is strongly related to the resolution, which makes it a possible criterion of a
well-resolved flow. According to Pope (2004), an LES model is well resolved when γ >

0.8. While all of our simulations show a ratio well above this limit, not all of the simulations
can be considered well resolved. Since the subgrid TKE is a modelled quantity depending
on the type of SGS model, a value of γ as a recommendation for a well-resolved simulation
depends on the model used. Ludwig et al. (2009) demonstrated how strongly the choice of
the SGS model can influence the results. Therefore, the recommendation that a sufficiently
fine resolution is reached when the fixed threshold γ = 0.8 is exceeded, may be misleading.
Furthermore, the resolved TKE with the LES approach can be higher than the total TKE
from direct numerical simulations, as shown by (Celik et al. 2005; Klein 2005), which makes
it a questionable indicator of grid resolution. An investigation of an adapted criterion of
Celik et al. (2005), which is also based on the ratio of resolved to total energy, showed
inconsistencies, which makes it also unreliable for the estimation of resolution quality.

The convergence of the boundary-layer growth is a specific criterion for the convective
boundary layer, which Sullivan and Patton (2011) conclude is a strong measure for solution
convergence. We also see this convergence in our results, and that it coincides with other
properties that indicate a good resolution, such as the convergence of the wind speed and
TKE. These findings suggest that the simulation is well resolved with a resolution of 20m
or less. However, to be able to see a convergence of the boundary-layer growth, several
simulations of different resolution have to be performed, which is quite an expensive way
to check whether a simulation is sufficiently resolved. Another recommendation of Sullivan
and Patton (2011) was to use zi/Δ > 60, which seems to be plausible, since measures such
as the two-point correlation are not available in advance, whereas the inversion height zi can
be reasonably estimated. This is consistent with our 20-m simulation for which zi/Δ ≈ 62.

The two-point correlations of the velocity components allow an estimation of the size of
the average flow structures, which we found can be very different for the various velocity
components and directions, and that the smallest structures of the floware in thew-component
in the y-direction for all stability cases and all resolutions investigated. The interpretation
of the two-point correlation surely depends on the choice of the threshold value. Consistent
with Davidson (2009), we selected a value of 0.3. The definition of the threshold directly
influences the size of the average structure in the flow, and by how many cells this structure
is considered to be resolved. However, we do not expect that the results will change much in
a qualitative way by a change of the threshold value.

Davidson recommends eight cells for a coarse simulation, and mentions that to be well
resolved, “some 16 cells [...] should be sufficient”, with this number related to the structures
of the streamwise and spanwise velocity components. Our results show that a recommenda-
tion of a fixed number of cells for the Buu(x∗) structures does not seem to be suitable for
the simulation of differently stratified boundary layers, since the Buu(x∗) structures of the
well-resolved simulations of the stable, neutral, and convective case are quite different. The
recommendation of 16 cells for a well-resolved simulation only fits to the neutral case, and
is too high for the stably stratified case, and too low for the convective case. However, the
number of cells of the Bww(y∗) structures is very similar for all well-resolved simulations,
which is an argument to concentrate on the smallest structures of the flow. The fact that the
number of cells is only slightly lower than four for the well-resolved flows may be a feature
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of the vertical velocity component, which was not investigated by Davidson (2009). Using
the linear relation of the size of the Bww(y∗) structures and the grid resolution to determine
the resolution requirements for a flow with Bww(y∗) structures resolved by four cells, Eq. 19
gives a resolution of 1.7m, 8m and 18m for the stable, neutral and convective simulations,
respectively. This is consistent with the grid resolutions identified as sufficient in the exam-
ination of the flow in Sect. 4. But, as suspected, the stably-stratified simulation needs to be
refined even more before being considered to be well resolved according to this four-cell
criterion.

The set-ups investigated are idealized situations with horizontally-homogeneous con-
ditions, which enable production of the necessary data for a well-averaged two-point
correlation. For more complex flows, it is less convenient to obtain sufficient data (a time
average instead of a spatial average), and to define the direction of the correlation. Further-
more, the two-point correlation can only be calculated after a simulation has already been
carried out.

We conclude that the two-point-correlation method is a very good measure for evaluating
the resolution of an LES model of the boundary layer, with most of the other measures
for the evaluation of the resolution showing inconsistencies or limitations. The two-point
correlation provides the number of cells required to resolve the average structures and is
independent of the subgrid TKE calculated by the subgrid model. The four-cell criterion can
rate a simulation without the examination of convergence, which can significantly reduce the
use of computational resources, since the most expensive simulation is always the one that
shows that convergence has already been reached. Theoretically, the two-point-correlation
method is also applicable to flows in complex terrain. However, in this case, the correlation
calculation cannot take advantage of the spatial homogeneity of the flow. Thus, two-point
correlations would need to be derived most likely from an ensemble of simulations, which
means a significantly increased amount of computing time. The linear connection between
the number of cells by which the smallest structures of the flow are resolved and the grid-cell
size can help in the selection of an adequate resolution. Further simulations of boundary-layer
flows may lead to a better understanding of this connection, and even yield a more general
function of the parameters of the flow, such as the Richardson number and the boundary-layer
height for estimation of the resolution quality in advance.
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Kosović B, Curry JA (2000) A large eddy simulation study of a quasi-steady, stably stratified atmospheric
boundary layer. J Atmos Sci 57(8):1052–1068

Letzel MO, Raasch S (2003) Large eddy simulation of thermally induced oscillations in the convective bound-
ary layer. J Atmos Sci 60(18):2328–2341

Letzel MO, KraneM, Raasch S (2008) High resolution urban large-eddy simulation studies from street canyon
to neighbourhood scale. Atmos Environ 42(38):8770–8784

Lu H, Porté-Agel F (2011) Large-eddy simulation of a very large wind farm in a stable atmospheric boundary
layer. Phys Fluids 23(6):065,101

Ludwig FL, ChowFK, Street RL (2009) Effect of turbulencemodels and spatial resolution on resolved velocity
structure andmomentumfluxes in large-eddy simulations of neutral boundary layer flow. J ApplMeteorol
Clim 48(6):1161–1180

Maronga B, Gryschka M, Heinze R, Hoffmann F, Kanani-Sühring F, Keck M, Ketelsen K, Letzel M, Sühring
M, Raasch S (2015) The parallelized large-eddy simulation model (palm) version 4.0 for atmospheric
and oceanic flows: model formulation, recent developments, and future perspectives. Geosci Model Dev
Discuss 8:1539–1637

Marusic I, Hutchins N (2008) Study of the log-layer structure in wall turbulence over a very large range of
reynolds number. Flow Turbul Combust 81(1–2):115–130

Marusic I, Kunkel GJ (2003) Streamwise turbulence intensity formulation for flat-plate boundary layers. Phys
Fluids 15(8):2461–2464

Marusic I, Monty JP, HultmarkM, Smits AJ (2013) On the logarithmic region in wall turbulence. J FluidMech
716:R3-1–R3-11

Mason PJ (1994) Large-eddy simulation: a critical review of the technique. Q J RMeteorol Soc 120(515):1–26
MatheouG,ChungD(2014)Large-eddy simulationof stratified turbulence. part ii:Applicationof the stretched-

vortex model to the atmospheric boundary layer. J Atmos Sci 71(12):4439–4460
Meeder J, Nieuwstadt F (2000) Large-eddy simulation of the turbulent dispersion of a reactive plume from a

point source into a neutral atmospheric boundary layer. Atmos Environ 34(21):3563–3573
Meneveau C, Marusic I (2013) Generalized logarithmic law for high-order moments in turbulent boundary

layers. J Fluid Mech 719:1
Meyers J,Geurts BJ, Sagaut P (2007)A computational error-assessment of central finite-volume discretizations

in large-eddy simulation using a smagorinsky model. J Comput Phys 227(1):156–173
Moeng CH, Sullivan PP (1994) A comparison of shear-and buoyancy-driven planetary boundary layer flows.

J Atmos Sci 51(7):999–1022
Mokhtarpoor R, Heinz S (2017) Dynamic large eddy simulation: stability via realizability. Phys Fluids

29(10):105,104
Noh Y, Cheon W, Hong S, Raasch S (2003) Improvement of the k-profile model for the planetary boundary

layer based on large eddy simulation data. Boundary-Layer Meteorol 107(2):401–427
Noh Y, Goh G, Raasch S (2010) Examination of the mixed layer deepening process during convection using

les. J Phys Oceanogr 40(9):2189–2195
Park SB, Baik JJ, Raasch S, Letzel MO (2012) A large-eddy simulation study of thermal effects on turbulent

flow and dispersion in and above a street canyon. J Appl Meteorol Clim 51(5):829–841
Perry A, Chong M (1982) On the mechanism of wall turbulence. J Fluid Mech 119:173–217
Pope SB (2004) Ten questions concerning the large-eddy simulation of turbulent flows. New J Phys 6(1):35
Porté-Agel F, Meneveau C, ParlangeMB (2000) A scale-dependent dynamic model for large-eddy simulation:

application to a neutral atmospheric boundary layer. J Fluid Mech 415:261–284
Porté-Agel F, Wu YT, Lu H, Conzemius RJ (2011) Large-eddy simulation of atmospheric boundary layer flow

through wind turbines and wind farms. J Wind Eng Ind Aerodyn 99(4):154–168
Smits AJ, McKeon BJ, Marusic I (2011) High-reynolds number wall turbulence. Ann Rev Fluid Mech 43:1
StevensRJ,WilczekM,MeneveauC (2014) Large-eddy simulation study of the logarithmic law for second-and

higher-order moments in turbulent wall-bounded flow. J Fluid Mech 757:888–907
Stoll R, Porté-Agel F (2008) Large-eddy simulation of the stable atmospheric boundary layer using dynamic

models with different averaging schemes. Boundary-Layer Meteorol 126(1):1–28
Sullivan PP, Patton EG (2011) The effect of mesh resolution on convective boundary layer statistics and

structures generated by large-eddy simulation. J Atmos Sci 68(10):2395–2415
Sullivan PP, Moeng CH, Stevens B, Lenschow DH, Mayor SD (1998) Structure of the entrainment zone

capping the convective atmospheric boundary layer. J Atmos Sci 55(19):3042–3064
Townsend AA (1980) The structure of turbulent shear flow. Cambridge University Press, Cambridge

123



Grid-Resolution Requirements for Large-Eddy Simulations of… 201

Vollmer L, van Dooren M, Trabucchi D, Schneemann J, Steinfeld G, Witha B, Trujillo J, Kühn M (2015) First
comparison of les of an offshore wind turbine wake with dual-doppler lidar measurements in a german
offshore wind farm. J Phys Conf Ser 625:012001

Wicker LJ, Skamarock WC (2002) Time-splitting methods for elastic models using forward time schemes.
Mon Weather Rev 130(8):2088–2097

Witha B, Steinfeld G, Dörenkämper M, Heinemann D (2014) Large-eddy simulation of multiple wakes in
offshore wind farms. J Phys Conf Ser 555:012108

Xiao H, Wang J, Jenny P (2014) Dynamic evaluation of mesh resolution and its application in hybrid
LES/RANS methods. Flow Turbul Combust 93(1):141–170

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Grid-Resolution Requirements for Large-Eddy Simulations of the Atmospheric Boundary Layer
	Abstract
	1 Introduction
	2 Model
	3 Model Set-up
	3.1 General
	3.2 Stable Case
	3.3 Neutral Case
	3.4 Convective Case

	4 Results and Discussion
	4.1 Mean Flow and Turbulence Variables
	4.2 Resolution Criteria Evaluation I: Turbulence-Resolving Measures
	4.3 Resolution Criteria Evaluation II: Two-Point Correlations

	5 Conclusions
	Acknowledgements
	References




