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Abstract Non-Gaussianity effects, first of all the influence of the third and fourth moments of 
the velocity probability density function, have to be assessed for higher-order closure models of 
turbulence and Lagrangian modelling of turbulent dispersion in complex flows. Whereas the role and 
the effects of the third moments are relatively well understood as essential for the explanation of 
specific observed features of the fully developed convective boundary layer, there are indications that 
the fourth moments may also be important, but little is known about these moments. Therefore, the 
effects of non-Gaussianity are considered for the turbulent motion of particles in non-neutral flows 
without fully developed convection, where the influence of the fourth moments may be expected to 
be particularly essential. The transport properties of these flows can be characterized by a diffusion 
coefficient which reflects these effects. It is shown, for different vertical velocity distributions, that 
the intensity of turbulent transport may be enhanced remaikably by non-Gaussian&y. The diffusion 
coefficient is given as a modification of the Gaussian diffisivity, and this modifying factor is found to 
be determined to a very good approximation by the normalized fourth moment of the vertical velocity 
distribution function. This provides better insight into the effect of fourth moments and explains the 
varying importance of third and fourth moments in different flows. 

1. Introduction 

A Gaussian shape is often assumed for the distribution of turbulent velocity fluctua- 
tions. This probability density function (pdf) is applied as a satisfactory approxima- 
tion in the theory of homogeneous turbulence (Batchelor, 1953). In the atmosphere 
it is found, for instance, in the surface layer under neutral stratification (Du et al., 
1994a). Deviations of the pdf from the Gaussian shape occur, for example, when 
the spatial transport of turbulent kinetic energy (TKE) contributes to the structure of 
turbulence. This can be seen from the budget equation of TKJZ (Stun, 1988), where 
the spatial gradients of third moments of the velocity pdf determine the turbulent 
transport of TKJZ. These transports are especially important for the structure of the 
convective boundary layer. The non-Gaussianity of the velocity pdf under these 
conditions is demonstrated in convection tank experiments (Deardorff and Willis, 
1985), by field experiments (Taconet and Weil, 1982; Caughey et al., 1983) and 
by large-eddy simulations (Moeng and Wyngaard, 1989; Schmidt and Schumann, 
1989). 
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An assessment of such non-Gaussianity effects is important for turbulence 
modelling. The Eulerian approach leads to the well-known hierarchy of coupled 
transport equations for the moments-of the velocity pdf. This leads to the need to 
derive closed equations for the moments of lower order, where often second-order 
closures are used providing closed variance equations (Mellor and Yamada, 1982). 
As stated by Stull (1988) it is generally assumed that equations for lower-order 
variables become more accurate as the closure assumptions are pushed to higher 
orders. There are different attempts to derive parametrizations of fourth-order 
terms, but very little is known about these moments and there is little guidance 
for suggesting good parametrizations. Usually, they are supposed to be quasi- 
Gaussian and written as functions of the second moments (references can be found 
in Stull, 1988). The Lagrangian modelling of the motion of fluid particles (Monin 
and Yaglom, 1971, 1975) represents an alternative approach to the description 
of turbulence and shows very attractive conceptual features (Pope, 1994a). This 
approach has been successfully applied to study the realizability of solutions of 
second-order models (Durbin and Speziale, 1994; Pope, 1994b) and to calculate 
turbulent dispersion of passive tracers in complex flows (van Dop et al., 1985; 
Thomson, 1987; Sawford, 1993). But these particle models have to be chosen 
with a dependence on the shape of the Eulerian velocity pdf to ensure consistency 
between the Eulerian and the Lagrangian view (Thomson, 1987). For real flows 
only partial information is available for the estimation of this function in terms of 
the moments of lower order. For given third and fourth moments Du et al. (1994a,b) 
showed, for instance, how a maximum missing information pdf can be constructed. 
It is interesting to note that this approach requires given third and fourth moments 
(the number of considered moments has to be even). This leads to the problem of 
finding appropriate values for these moments. 

Consequently, the role and the effect of the third as well as the fourth moments 
of the velocity pdf have to be investigated. This is relatively well understood with 
respect to the third moments. These terms explain the turbulent transport of TKE 
in the updrafts and downdrafts in the fully convective boundary layer (Hunt et al., 
1988). The effect of these terms is essential (Baerentsen and Berkowitz, 1984; 
de Baas and Troen, 1989; Luhar and Britter, 1989) to explaining the features 
for the mean particle height and vertical particle spread which are found in the 
water tank experiments of Willis and Deardorff (1976, 1978, 1981). In contrast, 
there is not a comparable understanding of the fourth moments, which may in 
particular be expected to characterize the turbulence structure in non-neutral, non- 
fully convective flows. 

To gain increased insight into the significance of these moments, the effect 
of non-Gaussian distributed velocities on the motion of fluid particles is consid- 
ered here for flows which show no strongly developed convective structures and 
may be non-neutral. It is convenient to investigate this by considering changes of 
the diffusion coefficient (K) caused by this non-Gaussianity. For approximately 
homogeneous and stationary turbulence K reflects the time integral of the veloc- 
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ity correlation and the time behaviour of the mean squared particle distance is 
governed by this coefficient for large times (Seinfeld, 1986). In the Eulerian view 
the diffusion coefficient, together with the mean wind, determines the change of 
concentration of a passive tracer. The calculation of the diffusion coefficient from 
stochastic fluid particle motion theory is considered in the next section. Adopting 
the Kolmogorov (1942) approximation for the dissipation, the symmetric compo- 
nent of the diffusion coefficient is then obtained from a dependence on the velocity 
pdf and on the mean dissipation rate of TKE. By considering different models of 
vertical velocity pdf’s the modifications of the diffusion coefficient are investigated 
in Sections 3 and 4. The conclusions concerning the role and effect of third and 
fourth moments are summarized in the last section. 

2. The Diffusion Coefficient 

An equation of turbulent diffusion can be obtained if the hydrodynamic budget 
equation for the concentration of a passive tracer is closed by a mixing-length 
model (Seinfeld, 1986). The range of applicability of this equation can be made 
plausible in this way, but there is little guidance to obtain assertions on the diffusion 
coefficient K under inbomogeneous conditions. A derivation of this equation and 
a simultaneous calculation of K needs a theory for fluid particle motion which 
is the concern of the Lagrangian approach (Sawford, 1993; Pope, 1994a). III this 
framework a turbulent flow is considered as a continuum of fluid particles. Each 
particle has a constant mass, a position and velocity, and possibly properties such 
as a potential temperature or a chemical composition. In a high-Reynolds number 
turbulent flow this particle motion can be described by a Fokker-Planck equation for 
the position-velocity pdf from which, by elimination of the velocity, the diffusion 
equation can be derived as the Fokker-Planck equation for the position pdf. By this 
procedure Thomson (1987) derived the diffusion equation for the change in time t 
and space x = (z’, x2, x3) of the ensemble averaged (symbol (. . e)) concentration 
(c) under a condition for the dissipation of TKE such that strongly developed 
convective conditions are excluded. This leads to the equation, 

Here, summation over repeated superscripts is assumed, u = (p)-’ (pU,> is 
written for the density-weighted mean Eulerian (subscript E) velocity vector with 
components Ui (i = 1, 2, 3), (p) is th e mean mass density of the flow and K is 
the diffusion coefficient matrix with elements Kij. The mean concentration (c) is 
determined by the positions of M marked particles (6 is the delta function), 

(c(x, q> = dm &6(x - xy(t))), (2) 
n=l 
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where dm is the constant mass of a particle and the position of the nth particle 
is denoted by the superscript (n) and the subscript L indicates a Lagrangian quan- 
tity. By the derivation of this equation from the stochastic theory of particle 
motion, in particular the diffusion coefficient K can be estimated in terms of 
particle properties. As shown below, the well-known Gaussian expression for the 
diffusion coefficient arises from the symmetric component KS = [K + KT3/2 
of K (the superscript T denotes the transposed matrix). Because we are interest- 
ed in deviations of the diffusion coefficient from the Gaussian expression due to 
non-Gaussianity of the velocity pdf, let us consider now the component KS. This 
depends on the Eulerian pdf F for velocities U at given locations x and times t 
which is determined by 

WJ, x, t) = dm c (6[U - U~)(t)]b[x - xt)(t)]), 
n=l 

(3) 

(4 where the velocities U, (t) and positions 2 p)(t) of all particles of the flow 
contribute to the sum (IV&r is the total number of particles in contrast to M). This 
function F is normalized to the mean mass density (p), i.e. it obeys 

s dWU, x, 9 = Mx, t>>. 
Secondly, KS depends on a quantity I3 which determines the intensity of the 
stochastic component of particle motion caused by the small-scale components of 
turbulence. Adopting the approximation of Kolmogorov (1942) for the dissipation 
of TKE, this quantity is independent of the velocity and given by (Thomson, 1987) 

B”j = (1/2)C&)6ij, (5) 

where (E) is the mean dissipation rate of TKE, bij is the Kronecker delta and 
Cc is an unknown parameter, for which a wide range of estimates is to be found 
in the literature. A good agreement between model predictions with laboratory 
measurements and observations in the atmospheric boundary layer was found for 
values 2.0 < CO < 3.5 (Du et al., 1995 and Heinz, 1997). From these two quantities, 
F and B, the symmetric component of the diffusion coefficent is given by 

K;j = (p)-‘(p(j?‘B-l~T)ij) = (&’ / dU$‘(v’B-‘VT)ij, (6) 

- 
where the quantity P. satisfies the equation, 

(7) 
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and the condition JdSiFp’j = 0, where dS is an element of the surface as - 
]U] + 00. This quantity V2J is completely determined by the distribution of 
velocity fluctuations and its mean value is given by 

where Vij is an element of the matrix V of Eulerian second-order moments with 

vij = (p)-l(p(u; - ui)(@ - @)j. (9) 

Let us now consider non-Gaussianity of only the vertical velocity pdf to simplify 
matters. For this we set F = [FGg(U3)]/gG(U3), where FG is a locally Gaussian 
pdf with (det V being the determinant of the second-moment matrix V) 

(P> 
FG = (2r)3/2(&tV)l/2 exp 

gG is the pdf of Gaussian-distributed vertical velocities which is obtained from FG 
by integration over the horizontal velocity components, 

gG = k’>-’ J dU’dU2FG = 
&33)‘,2 exp -;(v33)-1(u3 - ,,,2} ) (11) 

and g(U3) is an unknown vertical velocity pdf. Deviations of v from its mean 
value V appear then only in the element V33, since W = P for all (i, j) # (3, 
3). v33 is obtained from (7) by 

v33(u3) = -i iu3 do3(03 - u3)g(03), (12) 
co 

Adopting (5) we then find the symmetric component K, to be determined by the 
simple expression 

K 5 = 13-‘v2r 7 (13) 

where IT is a 3-dimensional matrix that modifies the Gaussian diffusion coefficient 
B-‘V2 which f 0 11 ows for g = gG. The elements of this matrix are given by 

0 

((v33)2;,(v33)2 
(14) 

Consequently we see from (13) and (14) that a non-Gaussian&y of the vertical 
velocity fluctuations is reflected in deviations r in the symmetric component KS 
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of the diffusion coefficient from the Gaussian expression B-‘V2. By this non- 
Gaussianity in the velocity pdf flow structures may be indicated (see below), 
whereby strong convective flows for which the diffusion limit breaks down (Garratt, 
1992) are excluded. We note that these non-Gaussian@ influences are reflected 
by the scalar I’ 33 This quantity I’33 is investigated in the next two sections for . 
different velocity pdf ‘s. 

3. Bimodal Non-Gaussianity 

Investigation of the effect of the vertical velocity pdf g on I’33 requires the con- 
struction of g in dependence on a few parameters. One way to do this uses the 
approach of Du et al. (1994a,b), where a maximum missing information pdf can 
be constructed based on an even number of given moments of this pdf. Assuming 
the knowledge of N moments, this pdf reads 

g = exp 

where the xk can be calculated numerically from the given N moments. lf moments 
up to fourth-order are taken into account in this maximum missing information pdf 
there is the problem to consider changes of the third and fourth moments which 
produce structures of practical relevance in the vertical velocity pdf. On the other 
hand it can be expected that the influence of non-Gaussianity on I’33 emerges most 
clearly if the consequences of changing structures appearing in g are investigated. 
Therefore the vertical motion is considered at first as a superposition of two different 
processes just like updrafts and downdrafts in convective turbulence. For this, 
the vertical velocity pdf is taken as the sum of two Gaussian pdf’s as assumed 
by Baerentsen and Berkovics (1984). Such a pdf has proved to reflect well the 
measured properties of convective flows (Luhar and Britter, 1989) and it has often 
been applied for the calculation of particle dispersion under these conditions (e.g. 
de Baas and Troen, 1989; Weil, 1990; Hurley and Physick, 1993). The vertical 
velocity pdf g multiplied by ( V33) U2 is then given by 

(v33> l12g = (2?r;~72gm exp[ -(w ;J-“) 

+ (2~;~20+ exp (-‘“;;“}, (15) 

where w denotes here and furthermore the vertical velocity U3 normalized to 
(~33) l/2 , i.e. w = U3 / ( V33) U2. Three conditions are given for the 6 parameters to 
be determined by the normalization, (i) s dw[(V33)1/2g] = 1; (ii) the assumption 
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of a vanishing mean vertical velocity, i.e. J dww[ (V33) ‘/*g] = 0; and (iii) the 
consistency condition for the variances J dww*[ (V33)‘/2g] = 1. To simplify 
matters it is supposed that the mean velocity w+ of updrafts is converted into the 
turbulent energy represented by a$, that means w+ = u+, and, corresponding for 
the sinking air, w- = u- (Baerentsen and Berkovics, 1984). This assumption was 
proved to be satisfactory by Luhar and Britter (1989). The ratio of the absolute 
values of the mean velocities in both modes will be defined now by 7 = w+/w- . 
For convective turbulence this ratio is related to the fractional areas of rising and 
sinking motions. If A, is the proportion of the area of updrafts and 1 - A, is 
the proportion of the area of downdrafts, we find 7 = (1 - A,)/A,. By Hunt 
et al. (1988) this ratio was found to be 7 = 1.5 and the data of Lenschow and 
Stephens (1980) lead to 7 = 3.0 as derived by Luhar and Britter (1989). Findings 
of A, (Randall et al., 1992) show that 7 can be expected in a maximum range 
of 0.4 < 7 < 5.3. If 7 is given, then all parameters are determined by it, where 
a+ = (1 + 7)-l, a- = y(1 + 7)-l, a: = 7/2, a? = l/(27), and the skewness 
is determined by s3 = (w3) = (7 - 1) . (2/r)‘/* and the kurtosis by Ku = (w4) 
= (5/2)[1 + 7-‘(7 - 1)2]. Th e model (15) of vertical velocity fluctuations will be 
considered now for varying values of 7. A closed parameter set for this model 
was derived in the applications mentioned above using the relations of 7 with the 
skewness (Baerentsen and Berkovics, 1984) and kurtosis (Du et al., 1994b) and 
adopting height profiles for s3 or the value Ku = 3, respectively. The introduction 
of 7 has the advantage that the effect of varying third and fourth moments on I’33 
can be studied such that the considered basic structure of the model is maintained. 
In Figure 1 different vertical distribution functions and in Figure 2 the skewness 
and the kurtosis are shown as functions of 7. The calculated I’33 is depicted in 
Figure 3, where for comparison the y-dependence of Ku/2.5 is also shown. This 
normalization factor 2.5 represents the minimum of Ku(y) as can be seen from 
Figure 2. This shows that a good approximation (the deviation is lower than 10%) 
to I’33 is given by 

r-33 = Ku 
Ku(7 = 1)’ (16) 

where Ku(7 = 1) = 2.5 in this model. Let us consider a similar second model, 
where the two modes are themselves non-Gaussian. Here the vertical velocity pdf 
is assumed to be 

(V33)‘/2g = aL~~~~~~~~-I [l - exp(-biw)] 
1 

+ (27r:)l/* 
exp(-w2/(2a2)) (174 

for w > 0; for w < 0 this function is given by 
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Figure 1. Three different distribution function densities of vertical velocity fluctuations in dependence 
on the ratio 7 = w+/w- of mean velocities w+ and w- of the positive and negative modes of the 
distribution function densities, respectively. The two modes are Gaussian. 

(jP)‘Pg = c2 exp(a2w) 
u;’ - (a2 + q-1 

[I - exp(bw)] 

+ (~7&/2 
exp(-w2/(2a2)). 

For the calculation of the 8 parameters to be determined, the normalization condi- 
tion and the consistency conditions have to be fulfilled in order to produce a first 
moment equal to zero and a second moment equal to V33. Moreover, it is assumed 
to fit the contribution of the Gaussian function at w = 0, that the function value at 
w = 0 represents the mean value of the two mode peaks at positive and negative 
velocities and that the dispersion u of this contribution is <w& + w;) / 10, where 
w;f, and W; are the absolute values of the velocities, where the two modes have 
a maximum. The construction of this Gaussian contribution is just a procedure 
to ensure a smooth transition between the two non-Gaussian modes. Then 3 free 
parameters remain open. To close the parameter set, the ratios y1 = br /al, 72 = 
b2/a2and~=(az/a~)(l+(1+y~)-1)/[l+(1+~2)-1]areintroduced,wherein 
particular 7 gives the ratio of the mean velocities in the two modes. Consequent- 
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Figure2. The skewness s3 = (w’) and the kurtosis Ku = (w”) of the vertical velocity pdfas functions 
of the mode ratio 7. 

ly, all parameters and the skewness .s3 and the kurtosis Ku can be determined as 
functions of 7t,72 and 7 as given in the appendix. The y-dependence of the vertical 
velocity pdf as well as skewness and kurtosis are shown in Figures 4 and 5. The 
distribution functions and kurtosis and skewness show features which are similar 
to those obtained in the first model, but the maximum value of the pdf g for 7 = 1 is 
considerably higher. In Figure 6 the y-dependence of I’33 is again compared with 
that of the normalized fourth moment, where the normalization Ku = 4 represents 
the minimum of Ku(7,7t = 1, 72 = 1) according to Figure 5. To investigate the 
influence of 71 and 72, in Figure 7 the latter one only is fixed (72 = 1). This figure 
shows that the influence of 71 is very weak and the same can be found for that of 
72. Consequently, it again follows to a good approximation (with a deviation lower 
than 10%) that I’33 = Ku/Ku~. 

These results illustrate that the fourth moments characterize the enhancement 
of the diffusivity caused by structures in the vertical velocity pdf. This effect 
can be considered on the level of the diffusion equation by a modification of the 
Gaussian diffusivity, but it can be taken into account, too, on the level of the more 
general fluid particle motion theory from which the diffusion equation, and with 
it the diffusion coefficient, are obtained. This can be deduced by a modification 
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Figure 3. The dependence of the modification l?33 of the Gaussian diffusion coefficient and of 
the normalized fourth moment Ku/2.5 on the mode ratio -y. The vertical velocity fluctuations are 
distributed according to Figure 1. The normalization factor 2.5 is the minimum of the fourth moment 
Ku as depicted in Figure 2. 

of the turbulent time scale r appearing e.g. in linear equations of motion (Heinz, 
1997). For this, the symmetric component of the diffusion coefficient is written 
by (13) as Ki3 = 4q2~l?33/(9Ca), where (5) and (e) = q2/(2T) are adopted, 
q2 = V”” is twice the TIE, and for simplicity isotropic turbulence is assumed. 
For Gaussian turbulence this leads to Ki3 = 4q27/(9Cc), and means that the 
influence of non-Gaussianity can be incorporated if r is replaced in this expression 
by r,& = rKu/Ku,~. This leads then to an increase in the mean squared particle 
distance with time since d((zi)2)/dt - T (Seinfeld, 1986). 

4. Asymmetric Non-Gaussianity 

The models considered above show that the non-Gaussian modification of the 
diffusivity can be explained over a wide range of y by the behaviour of the fourth 
moments. To assess better the range of validity of this finding let us seek a model 
where the influence of the third moments is considerably larger than in the models 
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Figure 4. Three different distribution function densities of vertical velocity fluctuations in the model 
with two non-Gaussian modes, where +y is the ratio of mean velocities in the two modes. 71 = 72 = 1. 

used above. For this we consider the general representation of g as a functional in 
its cumulants K, (Risken, 1984), 

(V’3)‘12g = ; / du exp( -iztw) exp (p, +n) > c (18) 

where w is normalized to Ki” = ( V33) ‘i2 and the K, (normalized to the corre- 

sponding powers of K:/‘) can be expressed by moments up to order n. By (12), 
v33 is determined by 

dC(zS - K1)(V33)‘/2g, 

or applying (18) and integrating over 6, by 

j733 
-= 
V33 (I/&~ I 

duiu(w - Kl) + 1 
(iu)2 

x exp --zu(w - KI) + y)exp(zFK.). 

(19) 

(20) 
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Figure 5. The skewness s3 = (w’) and the kurtosis Ku = (w”) as in Figure 2 for the model with 
two non-Gaussian modes of vertical velocities as shown in Figure 4. These moments depend on the 
parameters yl and 72 (appendix) which are set to unity. 

This expression can be transformed by partial integration, leading to 

p33 g(l) 
p = 1-(w-Kl)g-(W-K1)2 

O” %+I 
+c,- C-1) n dn) $w - K1) + (-Qn-‘y , (21) 

n-2 

where gcn) denotes the nth derivative of g, i.e. gcn) = Pg/awn. To proceed 
further this expression has to be simplified. If the cumulants are assumed to vanish 
at some order 2 3, then oscillations of the pdf ( V33) ‘j2g appear, where this function 
has positive as well as negative values (Risken, 1984). To ensure that g remains 
positive definite we take only the cumulants up to second-order into account. Then, 
it follows for l?33 using (14) 

r33 = ((20 - K,)4) + ( -K )2 ’ (m 1 (J2)-5. (22) 
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Figure 6. The dependence of the modification I’33 of the Gaussian diffusion coefficient and of the 
normalized fourth moment KuI4.0 on the mode ratio y for the model with two non-Gaussian modes 
of the vertical velocity distribution (Figure 4). The normalization factor 4.0 is the minimum of the 
fourth moment Ku as depicted in Figure 5. yl = 3)~ = 1 .O. 

This relation shows clearly the influence of the fourth moments on I’33. For approx- 
imately Gaussian turbulence with g(‘)/g M -(w - Ki) we obtain 

r33 M 2((w - lq4) - 5, (23) 

which corresponds with the above derived l?33 = Ku/Kuk. If g(‘)/g is exactly 
Gaussian this leads to I’33 = 1, since ((ul- KI)~) = 3. From (22) it can be seen that 
g(‘)/g has to be at least a linear function in (w - Ki) to ensure that third moments 
influence the modification of the diffusivity, that means g(‘)/g N -(w - Kr - s), 
where s is an unknown parameter. With the same arguments as in the section 
before, it is proposed now that g(‘)/g is a superposition of linear functions in 
-(w - Ki - s) which can be seen as maximum missing information functions 
of second order (N = 2). If instead N = 4 is considered there is the problem to 
find values for the fourth moments Ku which harmonize with the third moments. 
Figures 2 and 5 show for instance that the fourth moments change, if the third 
moments vary. Accordingly, seeking (V33)1/2g as a polynomial in v = (w - S) 
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Figure 7. The modifying factor ra and the normalized fourth moment Ku/4.0 in dependence on 7 
and rl. The parameter 72 has only an insignificant influence (as 71) and is set to unity. 

multiplied by the assumed mode exp(-v2/2), where the mean vertical velocity Kr 
is proposed as zero as above, we deduce the model 

(V33)1/2g = & gv2 - sz) + 1 - c exp -g , 
1 } ( ) 

(24) 

which fulfils the normalization condition and guarantees a mean value of the vertical 
velocity equal to zero and a second moment equal to V33. The same model was 
proposed by Thomson (1987) for the characterization of convective turbulence. It 
is very convenient for the investigation of the influence of the skewness, since the 
latter is related very simply to the parameter s by s3 = (w3), and for the fourth 
moment it follows that (w4) = 3( 1 + s4). The shape of the pdf g is depicted for 
different values of s in Figure 8 (it has a much lower peak than the pdfs considered 
in the models above). The s-dependence of the skewness and the kurtosis is shown 
in Figure 9. Here we can notice in particular that the fourth moments are very near 
to 3 over a wide range of s. For I’33 an analytical expression can be deduced which 
reads 
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Figure 8. Three different distribution function densities of vertical velocity fluctuations in dependence 
on the skewness parameter s with s3 = (w3) for the asymmetric non-Gaussian model. 

S4 
l?33 = 1 + 2 

i 
1 - 2zJ;;Imw(z + iy) + yfiRew(x + iy) 

1 
7 (25) 

where w is a complex error function, 

W(X) = 1+2in-‘/2 
s 
o5 dt exp(t*) exp( -x2). (26) 

Here, the abbreviations z = 1/(2.s*) I/* and y = [ ( l/(23*)) - ( l/2)] ‘I* are used. 
The s-dependence of I’33 is shown in Figure 10 compared with the s-dependence 
of the normalized fourth moment and (1 + s8) which fits the s-curve of I’33 
very well. The relative error A(s) of approximating I’33 = (1 + s8) again by 
Ku/Ku~in = ( 1 + s4) is A(s) = ( 1 + s4) /( 1 + s8) - 1. This error has a maximum 
of 0.207 at Js] = 0.8. 

With these results obtained here and in the previous section it appears that 
the relation l?33 = Ku/Ku,in is a fair approximation, but deviations up to 2 1% (a 
decrease of the diffusivity) can arise. 
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Figure 9. The skewness s3 = (w3) and the kurtosis Ku = (w”) of the vertical velocity pdf given in 
Figure 8 in dependence on the skewness parameter s. 

5. Concluding Remarks 

These results show that the fourth moments of the velocity pdf characterize the 
enhancement of the Gaussian diffusivity caused by turbulence structures for the 
symmetric component of the diffusion coefficient. The expression K, = KGI' 
was found, where KG is the diffusivity for Gaussian turbulence and l? is a matrix 
arising from non-Gaussian distributed vertical velocity fluctuations. This quantity 
is equal to the unit matrix except for the element I’33 which is determined to 
a good approximation by I 33=Ku/Kumh, where Ku,~ is the minimum of the 
kurtosis Ku with respect to the parameters introduced in the different models to 
characterize the distribution function. The quantitative effect of this enhancement 
of the turbulent transport intensity can be remarkable. Within the first model e.g., a 
ratio of y = 20+/u)- = 3 (which corresponds well with measurements as discussed 
in Section 3) between the mean-velocities in the two modes leads to a doubling of 
transport intensity. It is interesting to note that this influence of the fourth moments 
can be incorporated, too, at the level of the more general fluid particle motion theory 
as considered in Section 3. According to the findings obtained, the fourth moments 
are found to characterize the non-Gaussianity of velocity fluctuations essentially as 
long as the diffusivity concept works, that is as long as the TKE produced at some 
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Figure 10. The dependence of the modification l?33 of the Gaussian diffusion coefficient and of the 
normalized fourth moment Ku/3.0 on the skewness parameter s. The vertical velocity fluctuations are 
distributed according to Figure 8. The normalization factor 3.0 is the minimum of the fourth moment 
Ku in dependence on s as depicted in Figure 9. Additionally the curve (1 + s”) is shown which fits 
r33 very well. 

location is removed mainly by dissipation and not by spatial transport. Deviations 
from the local TKJZ transfer can be taken into account by a non-Gaussianity of the 
velocity pdf (second section). As investigated in the fourth section, considering 
the maximum influence of the third moments on the modification of the Gaussian 
diffusivity, the enhancement of the transport intensity given by the fourth moments 
is diminished by the third moments but their influence is limited to a decrease 
of about 21%. As discussed in the introduction, the third moments emerge as 
important for the characterization of convective conditions, where the diffusivity 
concept breaks down. 

These facts explain the role of the fourth moments for the description of the 
turbulence structure and support the approach of Du ef al. (1994a, b) to the con- 
struction of the maximum missing information pdf which requires (for N = 4) 
knowledge of the third as well as of the fourth moments. However, there is the need 
to estimate convenient values of these quantities which is a difficult problem as can 
be seen from the data for Ku measured during unstable stratification and presented 
by Du et al. (1994b). These data show that Ku is found in a range 2.5 < Ku < 
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5 which corresponds well with the variations found here. For their simulations of 
particle dispersion a value Ku = 3 is derived from these measurements correspond- 
ing with Gaussian turbulence. This cannot be expected in general according to the 
result presented here. Instead it seems to be advantageous to seek an “expectation” 
value of Ku (the data of Du et al. support a value between 3.5 and 4.0) and to 
estimate a range of variations of this quantity. These estimations can be applied for 
instance to an improved prediction of the location of the maximum ground-level 
concentration of passive tracers which depends upon the value of Ku (Du et al., 
1994b). 

On the Eulerian side, third-order closures require parametrizations for the fourth 
moments. For this, some guidance can be obtained from the first and third mod- 
el used above (in the second model these functions in 7 are more complicated). 
The fourth moments are related in the first model by (p)-‘(p(Ui - 03)4) = 
(5/2)(V33)2[1 + (1/2)(p)-‘(p(Ui - u3)3)2/(V33)3] with the second moment 
V33 given by (9) and the third moment, and in the third model this relation 
reads (p)-‘(p(Ui - u3)4) = 3(V33)2[1 + (p)-‘(p(Ui - u3)3)4/3/(V33)2]. It 
is remarkable that no unknown parameters appear. A parametrization using the 
second moments only is given e.g. in the first model by (p)-‘(p(Ui - t?3)4) 
= (5/2)(V33)2[1 + (7 - 1)2/7]. Th e p arameter y can be expected to be in the 
maximum range 0.4 < y < 5.3 but probably it is found between 1.5 and 3.0 
(Section 3). The assessment of the differences between these parametrizations and 
the choice of Ku within the maximum missing information pdf approach needs 
further investigation. 

Acknowledgement 

S. Heinz heartily thanks Prof. Han van Dop for discussions and suggestions. Many 
thanks also to Professor Peter A. Taylor for his valuable advice. Part of this work 
was carried out in the Fraunhofer-Institut fur Atmospharische Umweltforschung in 
Garmisch-Partenkirchen. 

Appendix 

The parameters used in the bimodal Gaussian model with non-Gaussian modes 
(Section 3) can be calculated by means of the introduced ratios y, yi and 72. We 
first define, 

A = 1 + Cl+ w’ 

1 + (1 + 72)-l ’ 
(Al) 

B- 141+71r3 - 
1 - (1+7$’ ’ 642) 
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c = 1 - (1 + r2)-3 

1 - (1 + 72)-l ’ 

D = 2B + A2Ch 
l+Y ’ 

b43) 

(A41 

E = (1 +w ‘h + y2A( 1 + ^IZ)-‘/~Z 

l+Y 
7 (A5) 

F= W +71) + -4141 +d 
646) 

71 972 * 

Then c3 = (27r)‘mSF/(20 + (27r)%F), CT = (1 + 1000(1 - c3)/F2)-‘12, a* 

= F/(lOa), a2 = yal/A, bl = yral, TV = y2a2, cl = (1 - s)/(l + 7) and c2 = 
y( 1 - cg)/( 1 + 7). The skewness and the kurtosis are given in terms of these 
parameters as 

s3 = 6 cl a’ 
-4 - (a* + b&4 -4 - (a2 + b2)-4 

-* - (a* + b*)-1 - c2:;’ - (a2 + b2)-’ ’ a1 I 
(A71 

Ku = 3c3a4 + 24 a1 -5 - (Ul + b’p + c2a;5 - (a2 + bp 
PI 

a1 - (a* + b*)-’ a;’ - (a2 + Q-1 1 * 
0-W 

The y dependence of these moments can be seen in Figure 5. 
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