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Abstract

A new Lagrangian mixing model is presented that describes the turbulent mixing of reacting scalars as a cascade process from large
to small scales. The model is derived by applying guidance of Eulerian multi-scale mixing models. Compared to these models, the
essential advantage of the derived Lagrangianmodel is given by the fact that approximations are restricted to the simulation of mixing
processes, i.e., chemical transformations are treated exactly. In contrast to previously applied Lagrangianmethods for scalar "elds, the
model presented here is shown to be applicable to inhomogeneous reacting liquid-phase #ows. This is of relevance to important
practical applications and further developments of models for the scalar mixing in multi-phase #ows. Evidence for the derived mixing
model in its general formulation is provided for di!erent #ows through its full consistency with well-tested Eulerian transport
equations. Applications to di!erent homogeneous #ows reveal essential features of the mixingmodel. Two new theoretical "ndings are
presented: First, the appearance of scalar gradients may lead to a signi"cant reduction of the composition frequency. Second, the
model structure presented here permits the derivation of an algebraic model for the composition frequency by relatively weak
assumptions. The good performance of that algebraic version of the general mixing model is demonstrated by simulating mixing and
parallel chemical reactions in a turbulent pipe #ow. It is shown that the error of conventional techniques that neglect Reynolds
number e!ects may amount to 50% for the considered case. These errors may be larger if more complex reaction mechanisms have to
be considered. � 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The calculation of turbulent reacting #ows by prob-
ability density function (PDF) methods o!ers signi"cant
advantages compared to the application of Reynolds-
averaged equation methods, because essential closure
problems do not appear that have to be handled in those
approaches. Importantly, turbulence}chemistry interac-
tions can be calculated in the PDF approach without
having to make assumptions on chemical conversions,
i.e., approximations are restricted to the description of
turbulent mixing (Pope, 1985, 2000; Fox, 1996; Baldyga
& Bourne, 1999). Nevertheless, the simulation of these
mixing processes represents an intricate problem: they

take place at various scales and their intensity may vary
over orders of magnitude. The energy-containing and
inertial subranges (see Fig. 1), where mixing is driven
through inhomogeneities of mean "elds (Pope & Chen,
1990; Pope, 1991; Van Slooten, Jayesh, & Pope, 1998;
Heinz, 1998), usually present the most important parts of
the spectrum of mixing processes. The consideration of
mixing processes at the Kolmogorov and Batchelor
scales is often restricted to the modelling of their dissi-
pative in#uence on the large scales, but their explicit
resolution may also be essential for both velocity and
scalar "elds.
With reference to #ow "elds, the simulation of mixing

processes at the Kolmogorov-scale is especially impor-
tant near solid walls, where the viscous transport domin-
ates the balance of the turbulent kinetic energy (TKE).
Di!erent approaches had been presented to consider
these Reynolds number e!ects in PDF methods. The
consideration of the motion of #uid particles leads to
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Fig. 1. Idealized energy spectra in fully developed homogeneous, iso-
tropic turbulence as described by Tennekes and Lumley (1972). The
velocity spectrum (spectral density function E

�
) has a large inertial

subrange in between the energy-containing and (viscous) dissipation
subrange. The integral-scale (k

�
) and Kolmogorov-scale (k

�
) wavenum-

bers are separated through the turbulent Reynolds number
Re

�
, k

�
"Re���

�
k
�
. The scalar spectrum (spectral density function E� )

has for Schmidt numbers Sc'1 in addition to the inertial-convective
a viscous-convective subrange. The Kolmogorov-scale and Batchelor-
scale (k

�
) wavenumbers are separated through the Schmidt number

Sc, k
�
"Sc���k

�
. The slopes !5/3 and !1 denote the scaling laws

E
�
(k)&k����,E�(k)&k���� and E�(k)&k�� in the corresponding

subranges.

complicated non-Markovian stochastic equations for
particle velocities, because the "nite correlation of their
accelerations has to be taken into account (Sawford,
1991; Heinz, 1997). These problems can be avoided by
considering the motion of stochastic particles (Dreeben
& Pope, 1997a, 1998). Such particles undergo both con-
vective motion through the velocity "eld (as #uid par-
ticles) and molecular motion, i.e., the increments of the
particle position depend on the velocity "eld and the
kinematic viscosity. A simpler method to take the e!ect
of a wall into account consists in the re#ection of its
in#uence through adopting suited conditions near
boundaries (Dreeben & Pope, 1997b), which corresponds
with the application of wall-functions in Reynolds-stress
closure models.
With reference to scalar "elds, mixing processes at the

Kolmogorov and Batchelor scales are especially impor-
tant for high-Schmidt number (Sc) reacting #ows
(liquids). Fig. 1 shows that the Kolmogorov-scale
wavenumber k

�
and the Batchelor-scale wavenumber

k
�
"Sc���k

�
are well separated in that case, i.e., the

characteristic transport time from the smallest to the

largest wavenumbers is signi"cantly larger than for
small-Sc #ows (gases) so that there is a remarkable delay
of the onset of chemical conversion processes. In depend-
ence on the reaction scheme, this fact may lead to phe-
nomena that are more di$cult to predict than the
in#uence of Kolmogorov-scale processes on the structure
of velocity "elds. That is relevant to many applications in
the chemical process industry, where high-Sc #ows often
appear.
By adopting concepts developed within the Eulerian

framework (Fox, 1995), the consideration of Reynolds
number e!ects in Lagrangian simulations of the evolu-
tion of scalar "elds has been considered previously by
Fox (1997, 1999). From a methodological point of view,
this approach represents a substantial progress due to its
systematic nature of describing the transport of scalar
energy as a cascade process from large to small scales.
Fox's Lagrangian spectral relaxation (LSR) model de-
scribes the multi-scale transport of scalars in gases in
a very good agreement with direct numerical simulation
(DNS) data. However, comparisons of predictions of the
LSR model with DNS or experimental data are not
available for Schmidt numbers Sc greater than unity
(Fox, 1997), i.e., the model is not tested for that case.
The present paper addresses in particular for high-

Schmidt number #ows (Sc�1) the question, in which way
mixing processes at the Kolmogorov and Batchelor scale
can be taken into account in Lagrangian PDF methods.
The approach is developed by adopting guidance of the
Eulerian mixing model of Baldyga to construct the Lag-
rangian equations (Baldyga & Bourne, 1984a}c, 1988,
1989, 1999; Baldyga, 1989). This model di!ers consider-
ably from that of Fox: it applies as parameters only three
characteristic times related to the mixing at di!erent
stages of the spectrum, and it is based on scaling argu-
ments so that no assumptions are required on the shape
of spectral functions. Baldyga's model is applicable to the
description of the mixing of di!erent scalars in in-
homogeneous and instationary #ows, and proved for
a variety of problems (Baldyga, 1994; Baldyga &
Henczka, 1995, 1997; Kruis & Falk, 1996; Baldyga
& Bourne, 1999).
The paper is organized as follows. In Section 2, Lag-

rangianmodels for the #ow "eld and scalar transport and
reaction are presented in order to provide a frame for the
model development. In Section 3, the new mixing model
is derived by the constraint that the Lagrangian stochas-
tic composition model has to satisfy the Eulerian trans-
port equations of Baldyga's turbulent mixer model.
Essential features of that multi-scale mixing model are
discussed for homogeneous #ows: decaying turbulence
and turbulence with local equilibrium are investigated.
The performance of a simple algebraic version of this
mixing model is illustrated in Section 4, where simula-
tions of mixing and parallel chemical reactions of species
in a turbulent pipe #ow are compared to measurements.
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Finally, the scope of the presented methodology and the
di!erences to other methods are summarized.

2. Lagrangian 6ow and composition models

In Section 2.1, simple Lagrangian stochastic models
for the velocity and mass fractions of species are
considered. These models provide a suited frame for
the following developments, and they are convenient for
the applications considered in Section 4. But in fact, the
methodology presented here can also be applied in con-
junction with other Lagrangian models (Pope, 1994a;
Fox, 1996; Wouters, Peeters, & Roekaerts, 1996). In
Section 2.2, Eulerian transport equations for the means
and variances of the velocity-composition "elds are de-
rived from the Lagrangian models presented in Section
2.1. These budget equations reveal the relationship to
usually applied Reynolds-averaged equations and pro-
vide the basis for the estimation of the composition
frequency in Section 3.

2.1. Lagrangian stochastic models

The simpli"ed Langevin model represents the most
simple way of representing Eulerian transport equations
in terms of a Lagrangian stochastic model (Pope, 1985,
1994a). It describes the change in time t of positions
xH"(xH

�
, xH

�
,xH

�
) and velocities UH"(;H

�
,;H

�
,;H

�
) of

a #uid particle moving with the #ow by (i"1, 2, 3)

d

dt
xH
�
(t)";H

�
, (1a)
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�
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(1b)

Here, p is the Reynolds-averaged pressure, � the averaged
#uid density, q�"�u

�
u
�
� twice the TKE and �"q�/(2�)

the dissipation time scale of turbulence, where � is the
mean dissipation rate of TKE. Eulerian velocity #uctu-
ations are denoted by u

�
";

�
!�;

�
�, and summation is

assumed for repeated subscripts. The Reynolds-averaged
Eulerian velocity �U�(xH, t) is written without a star in
contrast to Lagrangian quantities. The last term in
Eq. (1b) describes the in#uence of random accelerations.
This term is characterized by the white noise d=

�
/dt,

which is a Gaussian process with vanishing mean values,
�d=

�
/dt�"0, and with uncorrelated values at di!erent

times, �d=
�
/dt(t)d=

�
/dt�(t�)�"�

��
�(t!t�). The symbol

�
��
is the Kronecker delta and �(t!t�) the delta function.

For the parameter C
�

we apply C
�
"3.5 (Dreeben

& Pope, 1997b; Heinz, 1998).
Further, we use the often applied &interaction by ex-

change with the mean' (IEM) model to simulate the

mixing of species. In accord with the treatment of the
velocity "eld, no attempt is made to include molecular
transport explicitly (Dreeben & Pope, 1997a, 1998;
Colucci, Jaberi, Givi, & Pope, 1998). This approach is
justi"ed for the applications considered below and keeps
the development of the methodology simple. For other
applications involving simulation of the scalar distribu-
tion near walls, the consideration of these e!ects could be
essential. The micromixing of the mass fraction �H� of
a scalar 	 is described by the IEM model as (Pope, 1985)

d

dt
�H� (t)"!G�(�H� !����)#���r� , (1c)

where G� is an unknown coe$cient, which is often
modelled by G�"C�/(2�), i.e. the composition frequency
G� is taken proportional to the turbulence frequency ���.
C� is a constant with a standard value C�"2.0 (Pope,
1985). The "rst term on the right-hand side of Eq. (1c)
models the scalar micromixing in a formal correspond-
ence to that of momentum in Eq. (1b). The second term
���r�(�* ) describes chemical transformations exactly,
where the #uid density � is assumed to be constant for
simplicity. In contrast to subscripts i, j, k applied above,
no summation convention is used for repeated greek
subscripts.

2.2. Relationship to Reynolds-averaged equations

The Eqs. (1a)}(1c) can be transformed into a Fok-
ker}Planck equation for the one-point velocity-composi-
tion PDF. From that equation, transport equations can
be derived for all moments of this PDF by multiplication
with the corresponding variables and integration (Gar-
diner, 1983; Risken, 1984). By invoking the incompressi-
bility constraint �;

�
/�x

�
"0 and the de"nition of the

concentration C�"��� of a scalar, these equations read
for the mean velocity and concentration

��;
�
�

�t
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�
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These relations correspond to the exact Reynolds-aver-
aged equations if the acceleration due to gravity and
molecular transport terms are neglected. In the same
way, budget equations for the variances of the velocity-
composition "elds can be derived from the Eqs. (1a)}(1c),
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where c�"C�!�C�� denotes Eulerian concentration
#uctuations and the composition variance 
��"�c��� is
introduced to simplify the notation applied below.
Eq. (3a) represents a model for the turbulent transport

of momentum, which, adopting Kolmogorov's (1942)
theory for the dissipation, is fully consistent with Rotta's
(1951) turbulence model. A corresponding comparison
between the 
�� -transport equation derived from the
Lagrangian equation (1c) and equations derived within
the Eulerian framework is considered in Section 3. This is
done, in particular, to estimate the unknown coe$cient
G� in Eq. (1c) in terms of the characteristic quantities of
the inertial-convective, viscous-convective and viscous-
di!usive subranges: �, the Kolmogorov time scale �� and
the Schmidt number Sc. Provided that these quantities
and boundary and initial conditions are given (see Sec-
tion 4), Eqs. (1a)}(1c) appear in a closed form because the
Eulerian mean velocities, compositions, the mean pres-
sure gradient and the TKE can be evaluated from par-
ticle properties: kernel estimates provide weighted means
of properties of particles in the vicinity of a point con-
sidered, see Pope (1985, 2000) for details.

3. Lagrangian multi-scale mixing model

In Section 3.1, the multi-scale turbulent mixer model of
Baldyga (1989) is presented. This model is used in Section
3.2 to estimate the coe$cient G� in Eq. (1c) through the
constraint of consistency between the composition
covariance transport equation (3c) and Baldyga's model.
The composition frequencyG� is provided in that way by
means of a system of partial di!erential equations. In
Section 3.3, an algebraic version of that general model is
derived, which is of special relevance to practical applica-
tions. That model is discussed in Section 3.4: homogene-
ous, decaying turbulence and turbulence with local
equilibrium are investigated.

3.1. Eulerian multi-scale turbulent mixer model

A typical multi-scale micromixing model follows, in
a Lagrangian frame, a lump of #uid that mixes with its
environment by the following serial steps (Fox, 1996):

(1) Reduction in size down to the Kolmogorov scale,
with no change in reactant concentrations, at a rate
dependent on the initial #uid particle size relative to
the Kolmogorov scale.

(2) Further reduction in size down to the Batchelor scale,
with negligible change in reactant concentrations, at
a rate proportional to ���� , and

(3) Molecular di!usion and reaction in Batchelor-scale
lamellar structures.

The model of Baldyga (1989) re#ects these serial steps in
a simple way, where only a few parameters are applied.
The covariance 
�� of a non-reacting scalar is considered
as superposition of three parts: 
��"
���#
���#
��� .
These three contributions to 
�� represent the integrals of
the spectral scalar density function (see Fig. 1) in the
energy-containing and inertial-convective subrange (
���),
the viscous-convective subrange (
��� ) and the viscous-
di!usive subrange (
���) of the scalar spectrum. They
satisfy the transport equations

�
���
�t
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��� ,

(4c)

where C�"2.0, E"0.058/�� and G"(0.303#17050/
Sc)E. The Schmidt number is de"ned by Sc"�/D

�
,

where D
�
is the molecular di!usivity and � the kinematic

viscosity, and the Kolmogorov time scale by ��"(�/�)���.
In general, one has to consider the sum of the molecular
and turbulent di!usivity, D

�
#D

�
, instead of D

�
, but

D
�
is neglected here for simplicity, which is justi"ed for

the applications considered below.
The description of viscous-convective and -di!usive

mixing processes through Eqs. (4a)}(4c) is adequate when
the turbulent Reynolds number Re

�
"�/�� and the

Schmidt number Sc fall in a certain range. These two
non-dimensional parameters determine the ratios of E to
C�/� and G to E: E�/C�"0.029Re

�
and G/E"(0.303

#17050/Sc). The "rst condition for the validity of Eqs.
(4a)}(4c) is Re

�
*11.6, or, Re�*30 in terms of the

Taylor-scale Reynolds number Re�"2.582Re
�

(Bal-
dyga, 1999). This constraint ensures that the Kol-
mogorov and Obukhov}Corrsin constants, which are
applied to the estimation of the constants which appear
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in Eqs. (4a)}(4c), can be considered as practically con-
stant, i.e., as independent of Re� (Sreenivasan, 1996). The
second condition for the validity of Baldyga's model
(Eqs. (4a)}(4c)) is a large Schmidt number, Sc�1 (liquids),
so that a well-developed viscous-convective subrange
exists, see Fig. 1.
In the preparation of the comparison with the 
�� -

transport equation (3c), we derive a formally closed equa-
tion for 
�� by taking the sum of Eqs. (4a)}(4c),

�
��
�t

#�;
�
�

�
��
�x

�

#

��u
�
c���

�x
�

#2�u
�
c��

��C��
�x

�

"!GS��
�� , (5a)

where S��"
���/
�� is introduced and the de"nition of
D

�
through D

�
�
��/�x

�
"!�u

�
c��� is applied. Relation

(5a) reveals that molecular di!usion is the only mecha-
nism of mixing on the molecular scale. However, the
mixing frequency GS�� depends strongly on the rates of
inertial and viscous convective mixing. It can be proved
by Eqs. (4a)}(4c) that S�� satis"es the equation system
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Here, the abbreviations S��"
���/
�� and ��"
!2�u

�
c�� (��C��/�x

�
)/
�� are introduced. By adopting

algebraic expressions for �u
�
c�� and �u

�
u
�
� according to

Eqs. (3a)}(3b) with r�"0, the expression �� related to the
scalar gradient can be simpli"ed to ��"
�(q�/

�� )[��C��/�x

�
]�, where 
"8C

�
/[(3C

�
#2)(3C

�
#2

#4G��)].
It is worth noting that the Eulerian model (Eqs.

(5a)}(5c)), which is used in Section 3.2 for the derivation
of the Lagrangian multi-scale mixing model, di!ers from
the spectral relaxation (SR) model, which was used by
Fox as guideline for the construction of his LSR model
(Fox, 1995, 1997). Due to the reference to the Kol-
mogorov and Obukhov}Corrsin constants, the allowed
Re

�
-range is approximately the same in both models (the

SR model is applicable if Re
�
*8, or, Re�*20.7), but

the model of Fox may be applied to both small- and
large-Sc #ows. The concept to construct a multi-scale
mixing model for both gases and liquids is attractive, but,
in contrast to Baldyga's model, comparisons of the pre-
dictions of Fox's model with experimental results for

large-Sc #ows are presently not available. The assessment
of mixing models for such #ows through DNS appears to
become feasible, but presently, suited DNS data do not
exist. A signi"cant progress has been achieved recently
by Chasnov (1998), who performed DNS of #ows
with Sc-variations between 1)Sc)10�. The turbulent
Reynolds number varied in these simulations between
12.5)Re

�
)32.5. These DNS data reveal that there is

a remarkable e!ect of Sc on the mixing. However, the
present computer resources limit these DNS calculations
to two-dimensional #ows and do not allow the resolution
of the scalar spectrum for Sc*20 in such a way that the
characteristic mixing time could be derived properly.

3.2. Multi-scale Lagrangian mixing model

The comparison of the composition covariance trans-
port equation (3c) derived from the Lagrangian model
and Baldyga's equation (5a) for a non-reacting scalar
(r�"0) reveals that both equations are identical pro-
vided that

G�"0.5GS�� . (6)

Combined with suited initial and boundary conditions,
the Lagrangian equation (1c) in conjunction with Eqs. (6)
and (5b)}(5c) represents our Lagrangian multi-scale mix-
ing model. With reference to its IEM-structure, we de-
note it as multi-scale interaction by exchange with the
mean (MSIEM) model. We note that this generalization
of the IEMmodel is essentially di!erent from the general-
ized IEM model introduced by Tsai and Fox (1995). The
latter model relates the composition frequency to the
change of a shadow scalar "eld, which is not determined
through the model and has to be provided as an input. In
contrast to that, the MSIEM model calculates the com-
position frequency in dependence on the characteristic
mixing times of the processes involved.
According to Pope (1983, 1985), there are the following

modelling guiding principles: (i) dimensional consistency,
(ii) coordinate system independence, (iii) Galilean invari-
ance, (iv) realizability, (v) linearity and independence of
conserved passive scalars and (vi) boundedness of com-
position. Apparently, theMSIEMmodel satis"es the "rst
three principles. Realizability is ensured by the fact that
the Lagrangian mixing frequency G� is positive de"nite
and bounded, provided that G is evaluated as a bounded,
positive de"nite quantity (0)S��)1 by de"nition).
The "fth principle states that arbitrary (non-singular)

linear combinations of non-reacting scalars with equal
molecular di!usivities should mix according to the same
model. The MSIEM model satis"es that constraint pro-
vided that all the scalars have the same mixing proper-
ties, i.e., if G� is the same for each scalar. However, in
general, the MSIEM model calculates the mixing speci"-
cally for each scalar (in dependence on its mean gradi-
ents, initial and boundary conditions), such that the "fth
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modelling guiding principle is not always satis"ed. But,
for the set of scalars considered, it is ensured that the
scalars evolve independently: Eqs. (5b)}(5c) and (1c) de-
pend for a non-reacting scalar only upon a single scalar
subscript (	).
The sixth principle states that at any time, all physical

bounds of the scalars should be respected. It is satis"ed if
the modelled mixing process at any time only generates
new states inside the convex region in the sample space
which is already occupied by the scalars. As a conse-
quence of considering G� to be speci"c for each scalar,
the latter property is not always ensured. However, the
MSIEMmodel satis"es the boundedness constraint in its
weak formulation: if the initial and boundary values of
�� lie within a given range ������

)��)������
, then

��(x, t) for all (x, t) also lies in this range. The latter
property limits the possible deviations from the ideal
behaviour of a mixing model.

3.3. Algebraic multi-scale Lagrangian mixing model

For applications, an algebraic expression for the mix-
ing frequency G� is of special interest in order to reduce
the computational e!ort. Such a model is obtained by
neglecting in Eqs. (5b)}(5c) the terms on the left-hand
side. First, it is worth emphasizing that the neglect of
changes of S�� and S�� in time and space represents
a much weaker assumption than to neglect changes of

��� , 
��� and 
��� : only the changes of their ratios to the
total composition variance are assumed to be small com-
pared to the other contributions in their transport equa-
tions. An algebraic approximation for G� corresponds to
the consideration of the mixing frequency G� as a prop-
erty of the #ow "eld: the e!ects of initial and boundary
conditions of S�� and S�� on the mixing are neglected, i.e.,
the mixing frequency is assumed to be controlled by the
di!usive #ow motion. The neglect of the e!ects of the
S��� and S��� initial conditions is justi"ed for the consid-
eration of mixing for times much longer than the initial
stage of mixing, i.e., at least for all statistically stationary
#ows. The neglect of the dependence of G� on the bound-
ary values of S�� and S�� can be expected to be a valid
approximation if the scalar distribution near walls does
not cause signi"cant e!ects, e.g., on mixing and reaction
within reaction zones.
To see the relevant e!ects most clearly, we introduce

dimensionless variables: the scalar production-to-dissi-
pation ratio p�"��/(GS��), and the TKE-to-scalar dissi-
pation time scale ratio R�"�/�� , where ��"(GS��)��.
By neglecting the left-hand sides in Eqs. (5b)}(5c) and
replacing S�� in Eq. (5b) through a function of S�� ac-
cording to Eq. (5c), the following equation for R� can be
obtained:

0"R��!
A

�
1!p�

R��#
A

�
(1!p� )�

R�!
A

�
(1!p� )�

, (12)

where A
�
"E�#G�#C�, A

�
"EG��#C�E�#C�G�

and A
�
"C�EG��. Eq. (12) is solved by (k"0, 1, 2)

R�"
A

�
3(1!p�)

#

2

3

�A�
�
!3A

�
�1!p� �

cos�
�#2k�

3 �, (13)

where �"Arccos�[A�
�
!4.5A

�
A

�
#13.5A

�
(1!p�)]

(A�
�
!3A

�
)�����1!p� �(1!p�)���.

Relation (13) permits up to three real and positive
solutions, such that the question appears which of these
solutions will be realized by the general Eqs. (5b)}(5c). It
will be shown in the next section that the minimum of the
real and positive solutions which are provided by Eq. (13)
will be realized if there is no scalar production, i.e.,
p�"0. By extending that analysis, it can be shown nu-
merically (for all initial values 0)(S�� ,S�� ))1) that the
same behaviour is found for a non-vanishing p� . Hence,
the algebraic solution of Eqs. (5b)}(5c) is given through
the minimum of all real and positive solutions which are
provided by Eq. (13). We denote that model as algebraic
multi-scale interaction by exchange with the mean
(AMSIEM) model.

3.4. Homogeneous, decaying and local equilibrium
turbulence

To assess the behaviour of the AMSIEM model, we
consider it for two important cases: homogeneous,
decaying (p�"0) and local equilibrium turbulence
( p�"1).
To investigate the "rst case of homogeneous, decaying

turbulence, we neglect all the spatial gradients in Eqs.
(5b)}(5c) including �� . Under these conditions, the non-
linear and coupled Eqs. (5b)}(5c) can be rewritten into
linear equations for combinations of S�� and S�� ,

d

dt�
S��

S��!1
#1�

��

"E��
C�
E�

!1��
S��

S��!1
#1�

��
#1�, (14a)

d

dt
(S��!1)��

"!G��
E

G

S��
S��!1

#1�(S��!1)��#1�. (14b)

Eq. (14a) is closed in the function S��/(S��!1)#1,
which is very helpful for the calculation of the asymptotic
features of the model. Expression S��/(S��!1)#1 may
be written as S��/(S��#S�� ), where S��"
���/
�� . This
shows that S��/(S��!1)#1*0. The coe$cient
C�/(E�)!1 on the right-hand side of Eq. (14a) reveals,
that two cases have to be distinguished in order to assess
the asymptotic features of the model: C�/(E�)*1 and
C�/(E�))1. For C�/(E�)*1, we "nd the derivative of
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[S��/(S��!1)#1]�� to be always positive. Thus,
[S��/(S��!1)#1]��PR, that means S��/
(S��!1)P!1 for tPR. For C�/(E�))1, the func-
tion [S��/(S��!1)#1]�� will grow (decrease) for an
initially positive (negative) derivative, till both the terms
on the right-hand side balance each other. Hence, we "nd
S��/(S��!1)P!C�/(E�) in that case.
With reference to Eq. (14b), we observe that the deriva-

tive of (S��!1)�� is negative if (E/G)S��/(S��!1)#1
)0 (we note that S��!1)0). In that case, we "nd
(S��!1)��P!R asymptotically, that means S��P1.
For (E/G)S��/(S��!1)#1*0, the function (S��!1)��

will grow (decrease) for an initially positive (negative)
derivative, till the terms on the right-hand side of
Eq. (14b) balance each other. Thus, we "nd
S��P!(E/G)S��/(S��!1) in that case. By adopting the
asymptotic values of S��/(S��!1),!1 and !C�/(E�)
for C�/(E�)*1 and C�/(E�))1, respectively, these re-
sults are summarized by

S��"1�
for

C�
E�

*1 and
E

G
*1

or
C�
E�

)1 and
C�
G�

*1�
S��"�

E

G
for

C�
E�

*1 and
E

G
)1

C�
G�

for
C�
E�

)1 and
C�
G�

)1�, (15)

which leads (independent of the chosen initial values for
S�� and S��) after multiplication with G� to the asymp-
totic (normalized) mixing frequency

R�"Min(G�,E�,C�). (16)

That is a plausible result: the turbulence only dissipates if
there is no production, i.e., the mixing intensity R� will
become minimal asymptotically. The value of R� be-
comes controlled by the slowest step.
For the second case of local equilibrium turbulence

(p�"1) we obtain

R��� "C��� #(E�)��#(G�)��. (17)

That relation simply states that under local equilibrium
conditions the characteristic (normalized) mixing time
R��� is given through the sum of characteristic mixing
times of the three considered stages of the scalar spec-
trum.
By involving the de"nitions E"0.058/�� and

G"(0.303#17050/Sc)E,R� is determined through
Eq. (13) as a function of Re

�
,Sc and p� . Fig. 2 illustrates

these dependencies for a range of (high) Sc und p� . Find-
ings (16) and (17) are presented in Fig. 2a and c, respec-
tively. These curves quantify our expectation: For
growing turbulent Reynolds numbers Re

�
, the mixing

frequency R� approaches C� asymptotically. An increase
of the scalar production-to-dissipation ratio p� may be
seen as an increased production with reference to a ("xed)
dissipation, which causes a higher value of 
��� , see
Eq. (4a). For una!ected 
��� and 
��� , S��"
���/
(
���#
���#
���) has to decrease. Due to the increased
total variance, the characteristic scalar dissipation time
��"(GS��)�� becomes larger, that means the TKE-
to-scalar dissipation time scale ratio R�"�/�� has to
decrease for growing p� . Corresponding "ndings for gas-
phase mixing were reported by Sirivat and Warhaft
(1983). The e!ect of the Schmidt number Sc is consistent
with Fig. 1: higher values of Sc increase the characteristic
mixing time R��� .

4. Application to mixing and parallel chemical
reactions in a pipe

The MSIEM model represents a Lagrangian stochas-
tic model that satis"es exactly the transport equations of
Baldyga, which are tested for di!erent #ows (Baldyga,
1994; Baldyga & Henczka, 1995, 1997; Kruis & Falk,
1996; Baldyga & Bourne, 1999). This fact provides evid-
ence for its good performance. We illustrate this perfor-
mance here for the pipe #ow experiments of Baldyga and
Henczka (1997) for two reasons: "rst, to demonstrate the
applicability of the algebraic version AMSIEM of the
MSIEM model, and second, to show the remarkable
e!ect of the consideration of mixing processes at the
Kolmogorov and Batchelor scale. The simulations of the
pipe #ow and the mixing and parallel chemical reactions
are described in Sections 4.1 and 4.2. The results are
summarized in Section 4.3.

4.1. Pipe yow simulation

Experimental investigations were carried out in a tu-
bular reactor with an inner diameter of D"32 mm
equipped with a concentrically located tube with an inner
diameter of 1.81 mm and an outer diameter of 2.52 mm,
see Fig. 3. The mean pipe velocity �;

�
� varied from

0.469 to 2.19 m s��, which corresponds to a change of the
pipe Reynolds number Re"�;

�
�D/� from 15000 to

70000, where the kinematic viscosity �"10�	 m� s��

(Baldyga & Henczka, 1997).
To describe this pipe #ow, the Lagrangian equation

(1a)}(1c) have to be closed by models for the turbulence
time scale � and the Kolmogorov time scale �� , which are
required to estimate the frequencies C�/�, E and G. The
Schmidt number Sc, which appears in G, is taken to be
Sc"800. Transport equations for � in conjunction with
Lagrangian #ow models were presented for di!erent
#ows (Pope & Chen, 1990; Dreeben & Pope, 1997b;
Heinz, 1998). However, pipe #ow simulations in that way
were not performed previously. The experience obtained
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Fig. 2. The normalized composition mixing frequency R� in dependence on Re
�
for di!erent Sc and p� , where C�"2.0. In Fig. 2a, the curves for

Sc"10�, 10� and 10
 coincide.

Fig. 3. Illustration of the pipe #ow geometry and feed streams A, B
and C.

through channel #ow simulations led to the conclusion
that standard methods have to be extended by the con-
sideration of additional terms (Dreeben & Pope, 1997b).
Here our primary interest is in the mixing of species in
the reaction zone. In the conditions that will be cal-
culated there is a negligible in#uence of mean velocity

gradients in that zone (Baldyga &Henczka, 1997). There-
fore, we derive � and �� from the TKE, which is provided
by the Lagrangian equations (1a)}(1b), through an alge-
braic relation. This approach is advantageous to look at
the impact of the variations with Re considered below,
because the ratio of these time scales Re

�
"�/�� is found

as a robust function of the TKE. Correspondingly, we
apply �"C�D(q�/2)����. In that way, � is calculated as
the ratio of the length scale C�D to the characteristic
turbulence velocity (q�/2)���. The good performance of
this model for mixing simulations was tested by Tsai and
Fox (1994). C� is an open parameter, which may be
expected to have a value between 0.057, which arises
from the ratio of the two pipe diameters, and 1. We found
that the value C�"C�"0.09 brings the best agreement
between our #ow "eld simulations, measurements and
DNS (Eggels, 1994; Eggels et al., 1994; Toonder
& Nieuwstadt, 1997). By calculating the dissipation rate
of TKE according to �"q�/(2�), the model �"

C�D(q�/2)���� implies a similar simple expression for the
Kolmogorov time scale ��"(C�D�)���(q�/2)���
.
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Fig. 4. Mean axial velocity �;
�
� normalized on the centreline velocity

�;
�	

� as function of the normalized radial distance 2r/D from the
centreline. D is the pipe diameter and r the radial coordinate. The
triangles represent laser-Doppler anemometry (LDA) measurements,
which agree very well with hot-wire anemometry (HWA) and particle
image velocimetry (PIV) measurements and DNS data (Eggels, 1994;
Eggels et al., 1994).

Further, boundary conditions for particle velocities
have to be provided. As mentioned in Section 2, no
attempt is made to include viscous transport in the Lag-
rangian velocity equation, that means to calculate the
wall behaviour explicitly (Dreeben & Pope, 1997a, 1998),
because our primary interest is in the study of Reynolds
number e!ects on mixing and reaction. The e!ect of the
pipe wall is taken into account here by adopting bound-
ary conditions which re#ect the wall in#uence (Dreeben
& Pope, 1997b). This corresponds with the application of
wall-functions in Reynolds-stress closure models. The
purpose of this approach is to avoid the computational
expense which is required to resolve the steep gradients of
statistics that appear in the viscous sublayer, while never-
theless correctly represents the well-known near-wall fea-
tures. These characteristic features of the wall layer have
been found to be reasonably robust for #ows in channels,
pipes, and boundary layers: In the inertial sublayer, the
pro"le of mean velocity is a logarithmic function of the
wall-normal distance, the dissipation varies inversely
with that distance, and the production and dissipation of
TKE are approximately equal to one another (Dreeben
& Pope, 1997b).
According to the approach of Dreeben and Pope

(1997b), the following boundary conditions are applied to
the streamwise (;H

�
) and radial (;H

�
) particle velocities:

;H
���


"!;H
���


and ;H
���


";H
���


#	;H
���


, where the
subscripts I and R denote the values before and after
re#ection, respectively. The coe$cient 	 determines the
correlation coe$cient at the re#ection plane,
	"!2�u

�
u


�/�u�



�. In accord with pipe measurements

and DNS (Eggels, 1994; Eggels et al., 1994; Toonder
& Nieuwstadt, 1997), we applied 	"0 at the centreline,
and at the outer pipe radius we used 	"1.
The simulations were carried out by means of the code

PDF2DV (Pope, 1994b). Only the domain between sym-
metry axis and wall is considered. The domain is dis-
cretized into (radial) 18 and (streamwise axial) 75 cells.
The radial extent of the source corresponds to the radius
of the "rst grid cell. A non-uniform grid spacing was
applied in the streamwise direction, so that the ratio
between the length of the "rst cell (at the inlet) to that of
the last cell was 1/5. With that spacing, the length of the
"rst cell was approximately of the same size as the radial
cell length. It was proved that a higher spatial resolution
(a ratio of 1/10 between the lengths of the "rst and last
cells in the streamwise direction and 50% more grid
points) had no in#uence on the results. The extent of the
computational domain was 10D in the streamwise direc-
tion. The mean particle streamwise velocity at the inlet
region was derived from the Reynolds number by
�;

�
�"Re�/D, and the radial mean particle velocity was

set to zero. For the turbulence intensity we applied,
independent of Re, 0.16 at the inlet region (Eggels, 1994;
Eggels et al., 1994; Toonder & Nieuwstadt, 1997). The
in#uence of variations of 50% of this value on the results

presented in Section 4.3 is lower than 0.2%. The initial
values for � and �� were chosen according to their rela-
tion with the TKE. The latter results from the speci"ed
�;

�
� and the turbulence intensity.

The radial pro"le of the mean streamwise velocity
obtained with these initial and boundary conditions is
compared to the results of measurements in Fig. 4. This
"gure shows the correct simulation of the velocity "eld. It
was proved that the other #ow "eld quantities were
obtained in accord with the features found in measure-
ments and DNS (Eggels, 1994; Eggels et al., 1994; Toon-
der & Nieuwstadt, 1997). A detailed description of the
performance of the same code for similar conditions can
be found elsewhere (Dreeben & Pope, 1997b).

4.2. Simulation of mixing and parallel chemical reactions

The experimental investigations of the mixing and
reaction of species were carried out by introducing
a premixture of hydrochloric acid (B"HCl) and ethyl
chloroacetate (C"CH

�
ClCOOC

�
H

�
) over the reactor

cross-sectional area. A solution of sodium hydroxide
(A"NaOH) was fed through the concentrically located
injector, see Fig. 3. These species react according to

A#B ��&�P
�
, A#C ��&�P

�
, (18)

where k
�
PR, k

�
"23 dm�/(mol s) at a temperature

¹"293 K. P
�
and P

�
are the reaction products. Such

parallel chemical reactions were proposed to characterize
mixing by Baldyga and Bourne (1990). This reaction
scheme represents the structure of many important chemi-
cal process engineering or environmental applications
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(Fox, 1996; Baldyga & Bourne, 1999). As shown below,
the e$ciency of chemical conversions according to Eq.
(18) may depend very sensitively onmixing. This quantity
can be evaluated through the "nal selectivity X

�
of form-

ing P
�
, which is proportional to the decrease of the

C-concentration along the reactor

X
�
"

CM
��

!CM
��	
�

CM
��

, (19)

where CM
��
, CM

��
and CM

��	
�
are the inlet concentrations of

C and A and the outlet concentration of C, respectively,
averaged over the reactor diameter. These quantities
were measured chromatographically (Baldyga &
Henczka, 1997).
The calculation of the reaction between A, B and

C requires an appropriate handling of the in"nitely fast
reaction between A and B. These species cannot coexist,
i.e., the consideration of their di!erence is su$cient.
Therefore, instead of C

�
,C

�
and C

�
we consider only

two dimensionless concentration di!erences:

�
�
"

C
�

!C
�

C
��

, (20a)

�


"

C
�

!C
�
!C

�
#C

��
#C

��

C
��

#C
��

#C
��

, (20b)

where C
��
, C

��
and C

��
are the initial concentrations of

A, B and C. Relation (18) reveals that the reaction rate of
�



is zero. The reaction rate ���r

�
of �

�
is zero for

negative �
�
and otherwise given by

���r
�
"!k

�
C

��
�

�
(�

�
!��

�
). (21)

In Eq. (21), ��
�

"�


(C

��
#C

��
#C

��
)/C

��
!

(C
��

#C
��
)/C

��
is used, which is �

�
for k

�
"k

�
PR.

The consideration of �



and �
�

is su$cient for the
calculation of X

�
, because the concentration C

�
is deter-

mined by these quantities,

C
�
"C

��
(�

�
!��

�
). (22)

Calculations of X
�
according to Eq. (19) were performed

for Re-variations between 15000 and 70000 and vari-
ous initial concentrations for A, B and C: (a) C

��

"0.45 mol/dm�, C
��

"C
��

"0.009 mol/dm�, (b)
C

��
"0.9 mol/dm�, C

��
"C

��
"0.018 mol/dm�, (c)

C
��

"0.45 mol/dm�, C
��

"C
��

"0.014 mol/dm�. The
mixing of �



and �

�
was calculated by the AMSIEM

(13), where the expression ��"
�(q�/
�� ) [��C��/�x
�
]�

was applied to estimate �� .

4.3. Results

The results of the simulations described in Sections 4.1
and 4.2 are presented in Fig. 5. The fact that in this
experiment the selectivity X

�
depends on the Reynolds

number Re can be explained as follows. Close to the
injector, there is a lot of A compared to B#C. After

consumption of part of A by the reaction with B there
remains A to participate in the second reaction. The
higher Re"�;

�
�D/� (or the inlet #ow velocity, respec-

tively), the smaller is the selectivity X
�
due to the slower

chemistry between A and C. This dependence of the
chemistry on the Reynolds number can be made explicit
by means of the DamkoK hler number Da

�
"2k

�
CM

�
�/R

�
(R

�
is written for R� here) for the reaction between A and

C. By means of �"C�D(q�/2)���� and �;
�
�"Re�/D

we "nd Da
�
"2k

�
CM

�
C�D�/(i�ReR

�
), where i"

(q�/2)���/�;
�
� is proportional to the turbulence inten-

sity. This quantity is independent of Re (Eggels, 1994;
Eggels et al., 1994; Toonder & Nieuwstadt, 1997), so that
Da

�
is found to be inversely proportional to �ReR

�
(R

�
grows with increasing Re, see Fig. 6). The e!ect of Da

�
can also be observed by comparing Figs. 5a and 5b. Due
to the chosen initial concentration of A, the DamkoK hler
number Da

�
related to Fig. 5b is twice the value of

Da
�
related to Fig. 5a. At Re"15 000, the inlet values

of these DamkoK hler numbers are Da
�
"0.38 and 0.19,

respectively.
The comparison with the measurements reveals the

good performance of the AMSIEM model: all calculated
results are within the range of accuracy ($0.007 practic-
ally independent of Re (Baldyga, 1999)) of the experi-
mental data. The neglect of Re-e!ects, i.e., the calculation
of the mixing with the usually applied mixing rate C�/�
instead of R�/�, leads to a remarkable underestimate of
the selectivity X

�
, which amounts to approximately 50%

for Re"15 000. The reason for this di!erence is given by
the fact that C�/� provides a too strong mixing between
A and B#C. In that case, X

�
decreases due to the

in"nitely fast destruction of A through reaction with B,
i.e., there is less A left to participate in the reaction with
C. The overprediction of mixing through C�/� is illus-
trated in Fig. 6, where E�/C�"0.029 Re

�
and R�/C� are

shown along the centreline for Re"15 000 and 70 000.
The normalized composition frequency of the model that
applies C�/� as mixing rate is given by 1. The values of
E�/C� indicate for the di!erent Reynolds numbers the
relevance of Re-e!ects and demonstrate the applicability
of Baldyga's approach because Re

�
*11.6. For ��"0,

the calculated mixing frequency R�/� would be equal to
E, but the appearance of a streamwise scalar gradient in
conjunction with small values for the variance of �



re-

sults in values of �� �/C� near 0.5 in the reaction zone,
which leads to a smaller mixing frequency R�/�.

5. Summary

We presented a new Lagrangian mixing model that
simulates in accord with Eulerian transport equations for
means and variances the turbulent mixing of reacting
scalars as a cascade process from large to small scales.
In contrast to the description of these processes in the
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Fig. 5. Product distribution X
�

vs. Reynolds number Re. The initial feed concentrations of A, B and C are: (a) C
��

"0.45 mol/dm�,
C

��
"C

��
"0.009 mol/dm�, (b) C

��
"0.9 mol/dm�, C

��
"C

��
"0.018 mol/dm�, (c) C

��
"0.45 mol/dm�,C

��
"C

��
"0.014 mol/dm�. The

dashed line gives the result of the model that applies C�/� as mixing rate. The error bars denote the accuracy of these measurements.

Fig. 6. The normalized composition mixing frequency R�/C� and
E�/C� along the pipe centreline for Re"15 000 and 70 000.

Eulerian framework, no closure assumptions on mean
reaction rates are required in the Lagrangian approach
applied here, i.e., approximations are restricted to the
simulation of mixing processes. In contrast to previously
applied methods in the Lagrangian approach, the de-

rived mixing model is shown to be applicable to the
calculation of the multi-scale turbulent mixing in in-
homogeneous liquid-phase reacting #ows. This is of rel-
evance to both chemical engineering applications and the
further development of models that describe multi-scale
mixing in multi-phase #ows.
Two new "ndings are presented here, which are of

interest from a theoretical point of view: First, it has been
demonstrated that scalar gradients (the scalar produc-
tion-to-dissipation ratio) may lead to a signi"cant reduc-
tion of the composition frequency. Second, it has been
shown that simple algebraic models for the composition
frequency, which are of special relevance to the evalu-
ation of complex turbulence-chemistry interactions, can
be derived by means of relatively weak assumptions, see
Section 3.3. The methodology used here to construct the
mixing model can be applied in consistency with other
Eulerian variance transport equations and other Lagran-
gian (frame) models than the simple models used here to
illustrate the approach. Additionally, the presented de-
scription of micromixing can be adopted in computation-
ally less-demanding PDF methods as the multi-
environment CFD micromixing model (Fox, 1998).
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The MSIEMmodel can be seen as proved for di!erent
#ows through its full consistency with the well-tested
transport equations of Baldyga. The good performance
of its algebraic version, i.e., of the AMSIEM model, was
illustrated in Section 4. It was shown that in the simula-
tions of the tubular reactor experiments of Baldyga and
Henczka (1997) the inclusion of Reynolds number e!ects
leads to good results in contrast with the use of the
standard mixing frequency of the large-scale turbulence
that results in errors up to 50%. The errors of calcu-
lations where mixing at the Kolmogorov and Batchelor
scale is not accounted for may be much larger, if more
complex reaction mechanisms have to be considered.

Notation

A
�
,A

�
,A

�
parameters in the AMSIEM model

A, B, C species involved in the reactor chemistry
C

�
parameter in the Lagrangian velocity equa-
tion ("3.5)

C� parameter in the Lagrangian species equa-
tion ("2.0)

C� parameter in the �-equation ("C�"0.09)
C� concentration of species 	
C
��
,C

��
,C

��
initial species concentrations

C
��	
�

outlet concentration of C
D reactor diameter
D

�
,D

�
molecular and turbulent di!usivities

Da
�

DamkoK hler number ("2k
�
CM

�
�/R

�
)

E characteristic frequency in the multiscale
model ("0.058/��)

E
�
,E� velocity and scalar spectral density func-

tions
G characteristic frequency in the multiscale

model ("(0.303#17 050/Sc)E)
G� mixing frequency in the Lagrangian species

equation ("Re�/(2�))
P
�
,P

�
reaction products

Re Reynolds number ("�;
�
�D/�)

Re
�

turbulent Reynolds number ("�/��)
Re� Taylor-scale Reynolds number

("2.582 Re
�
)

R� TKE-to-scalar dissipation time scale ratio
("�/��)

R
�

R� for the substance C
Sc Schmidt number ("�/D

�
)

S�� i"1, 2, 3 "(
���/
�� where i"1, 2, 3)
¹ temperature
;H

�
ith component of the Lagrangian velocity

;H



radial Lagrangian velocity component
;

�
ith component of the Eulerian velocity

=
�

ith component of a Wiener vector process
X

�
selectivity of forming the reaction product
P
�

c� Eulerian concentration #uctuation
i ("(q�/2)���/�;

�
�)

k wavenumber
k
�

peak wavenumber of the energy spectrum
k
�

Kolmogorov-scale wavenumber
k
�

Batchelor-scale wavenumber
k
�
, k

�
reaction constants

p mean pressure
p� scalar production-to-dissipation ratio

("��/(GS�� ))
q� twice the TKE ("�u

�
u
�
�)

r radial distance from the reactor centreline
r� chemical source term in the Lagrangian

concentration equation
t time
u
�

ith component of the Eulerian velocity #uc-
tuation

u



radial component of the Eulerian velocity
#uctuation

xH
�

ith component of the particle position
x
�

ith component of the position vector

Greek letters

	 ("!2�u
�
u


�/�u�



�)

�
��

Kronecker symbol
�(�) delta function
� mean dissipation rate of TKE
�� scalar gradient term in the MSIEM model

 ("8C

�
/[(3C

�
#2)(3C

�
#2#4G� �)])

� kinematic viscosity
� mean #uid density

�� scalar variance ("�c���)

��� ith spectral contribution to


��"
���#
���#
���
� time scale of TKE dissipation ("q�/(2�))
�� Kolmogorov time scale ("(�/�)���)
�� scalar time scale ("(GS�� )��)
� parameter in the AMSIEM model
�H� Lagrangian mass fraction of the scalar 	
�� Eulerian mass fraction of the scalar 	
�



dimensionless concentration di!erence

�
�

dimensionless concentration di!erence
��

�
�

�
for k

�
"k

�
PR

Symbols

�Q� Reynolds-averaged variable Q
QM Q averaged over the reactor diameter
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