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The model development ensures that the mean velocity correctly agrees with the
asymptotic velocities at the centerline/free-stream boundary. However, this does not
necessarily imply that the velocity gradients disappear there, as required. With respect
to S+

1 , Eq. (A.2) reveals that S+
1 disappears for the TBL, but for channel and pipe flow

there is at y = 1 a very small but nonzero contribution

S+
1 (1) = 1 −

[
(Reτ /a)b/c

1 + (Reτ /a)b/c

]c

, (S.1)

which becomes smaller with increasing Reynolds number. To ensure that S+
1 is fully

consistent with the requirement of zero gradients at the centerline, we introduce for
channel and pipe flow a modified S+

1 by

S∗
1 = 1 −

{
(1 − y)

[
(y+/a)b/c

1 + (y+/a)b/c

]c

+ y

1 − S+
1 (1)

[
(y+/a)b/c

1 + (y+/a)b/c

]c}
. (S.2)

This expression ensures a smooth transition of S+
1 to its asymptotic value zero at y = 1.

By using Eq. (A.2), the latter equation can be written more conveniently as S∗
1 =

S+
1 + SCP

1 , where
SCP

1 = −yS+
1 (1) 1 − S+

1
1 − S+

1 (1)
. (S.3)

The implied UCP
1 in the modified velocity U∗

1 = U+
1 + UCP

1 follows from integrating
Eq. (S.3) combined with the condition that the shear correction does not affect U+

1 at
y = 0,

UCP
1 = S+

1 (1)
1 − S+

1 (1)
a2

2Reτ

[
cBG

(
c + 2c

b
, 1 − 2c

b

)
+ G

2c
b (1 − G)− 2c

b − Gc+ 2c
b (1 − G)− 2c

b

]

− y+2

2Reτ

S+
1 (1)

1 − S+
1 (1)

. (S.4)

The maximum contribution due to UCP
1 can be evaluated in the following way. By using

Eq. (A.2), we can prove that 1−S+
1 ≤ 1−S+

1 (1). Hence, |SCP
1 | ≤ yS+

1 (1). The integration
of this expression then provides |UCP

1 | ≤ S+
1 (1)y+2/(2Reτ ). The maximum relative

change of this contribution with respect to U+
∞ is then given by e = S+

1 (1)Reτ /(2U+
∞) at

y = 1. For the lowest Reynolds number considered here, Reτ = 500, this relative change
is 0.27%, and this relative change rapidly becomes smaller with increasing Reynolds
numbers. Such differences smaller than 0.27% do not produce any visible effects in the
velocity figures shown here.
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Figure S.1. J(p) according to Eq. (S.9): the black line shows the numerical solution to Eq. (S.9). The pink
line (which is hardly visible) shows the approximation Eq. (S.10).

With respect to S+
2 and S+

3 , there is again no problem for the TBL where S+
2 and

S+
3 balance each other asymptotically. For channel and pipe flow, S+

2 and S+
3 almost

balance each other asymptotically, but there is a very small difference at y = 1 produced
by small deviations of S+

2 from 1/(κy+). To adjust this difference, we follow a similar
approach as with respect to the adjustment of S+

1 . We have

S+
2 (1) = 1

κReτ

1 + h3/[1 + Reτ /h1]
1 + yκ/(Reτ H(y = 1))

, (S.5)

and we introduce a modification S∗
2 of S+

2 by

κy+S∗
2 = (1 − y)1 + h3/[1 + y+/h1]

1 + yκ/(y+H)
+ y

κReτ S+
2 (1)

1 + h3/[1 + y+/h1]
1 + yκ/(y+H)

. (S.6)

This correction ensures κy+S+
2 = 1 at y = 1, as needed for the balance of S+

2 and S+
3 .

A more convenient writing of the latter equation is given by S∗
2 = S+

2 + SCP
2 , where

SCP
2 = −yS+

2

(
1 −

[
κReτ S+

2 (1)
]−1)

. (S.7)

This shear modification implies a corresponding outer boundary layer correction UCP
2

in U∗
2 = U+

2 + UCP
2 ,

UCP
2 = −

(
1 −

[
κReτ S+

2 (1)
]−1) y

κ
J(p). (S.8)

This expression involves the abbreviation

J(p) = 1 − p

p

ˆ p

0

s1+h3

(1 − s)2
1 + h3(1 − s)

s1+h3 + (1 − s)yκ/h1
ds. (S.9)

This integral involves p = y+/h1/[1 + y+/h1], which is bounded by zero and one,
0 ≤ p ≤ 1. An exact analytical calculation of this integral is not possible (and it
would be of limited usefulness because it would involve relatively complex functions
like hypergeometric functions, as may be seen by solving the simplified integral over
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s1+h3/(1 − s)2). A much more appropriate approach is to derive a highly accurate
but simple analytical approximation. A very good approximation to J(p) is given by
J(p) = p10. A better approximation is shown in Fig. S.1, which demonstrates the
excellent performance of the approximation

J(p) = αp1+h3 [1 + (α − 1)p + 1.236p(p − 1)(p − 0.55)]−1 , (S.10)

where α = h1(1 + h3)/[yκ(2 + h3)]. The term αp1+h3 in front of the bracket arises
from the initial scaling of J(p). The bracket term describes an slightly modified linear
function that varies between 1 (at p = 0) and α (at p = 1). The relative error of the
largest deviation between J(p) and the approximation Eq. (S.10) is below 0.4%: there
is no visible difference in Fig. S.1. The relative impact of shear-induced corrections can
be seen in the following way. From Eq. (A.12) we see that yS+

2 ≤ S+
2 (1). This implies

|SCP
2 | ≤ (1 − [κReτ S+

2 (1)]−1)S+
2 (1) according to Eq. (S.7). This expression implies by

integration |UCP
2 | ≤ (1 − [κReτ S+

2 (1)]−1)S+
2 (1)y+. The maximum relative change of

this contribution with respect to U+
∞ is then e = (1 − [κReτ S+

2 (1)]−1)S+
2 (1)Reτ /U+

∞ at
y = 1. For the lowest Reτ considered here, Reτ = 500, this relative change is 0.22%, and
this relative change rapidly becomes smaller with increasing Reynolds numbers. Such
differences smaller than 0.22% do not produce any visible effects in the velocity figures
shown here.
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