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ABSTRACT
The universality and mathematical physical structure of wall-
bounded turbulent flows is a topic of discussions overmanydecades.
There is no agreement about questions like what is the physical
mean flow structure, how universal is it, and how universal are the-
oretical concepts for local and global flow variations. These ques-
tions are addressed by using latest direct numerical simulation (DNS)
data at moderate Reynolds numbers Re and experimental data up
to extreme Re. The mean flow structure is explained by analytical
models for three canonical wall-bounded turbulent flows (channel
flow, pipe flow, and the zero-pressure gradient turbulent bound-
ary layer). Thorough comparisons with DNS and experimental data
provide support for the validity of models. Criteria for veritable
physics derived from observations are suggested. It is shown that
the models presented satisfy these criteria. A probabilistic inter-
pretation of the mean flow structure shows that the physical con-
straints of equal entropies and equally likely mean velocity values
in a region unaffected by boundary effects impose a universal log-
law structure. The structure of wall-bounded turbulent flows ismuch
more universal than previously expected. There is no discrepancy
between local logarithmic velocity variations and global friction law
and bulk velocity variations. Flow effects are limited to the mini-
mum: the difference of having a bounded or unbounded domain,
and the variation range of mean velocity values allowed by the
geometry.
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1. Introduction

The understanding of themathematical physical mean flow structure of wall-bounded tur-
bulent flows is an important and vibrant topic of classical fluid mechanics for almost a
century [1–36]. In this regard, it is of primary interest to explain the structure and physical
relevance of mean flow variations in inner and outer scalings, to understand the universal-
ity of mean flow variations in inner scaling and the flow dependence of velocity variations
in outer scaling. More specific questions are the following ones:
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(Q1) Structure: What is the physical mean flow structure of wall-bounded flows (does
it involve logarithmic variations; is there a new unified law instead of a log-law or
power law)?

(Q2) Universality: Howuniversal is themean flow of wall-bounded turbulent flows (how
does the flow considered affect the mean flow; is the log-law flow-dependent)?

(Q3) Theory: Are different formulations of log-law theory consistent (how universal
is the von Kármán constant κ depending on the flow and log-law formulation
considered)?

These questions, which represent open current research questions [31–36], will be
addressed here for a wide range of Reynolds numbers with respect to three canonical wall-
bounded turbulent flows: channel flow, pipe flow, and the zero-pressure gradient turbulent
boundary layer (TBL). For simplicity, the zero-pressure gradient TBL will be referred to
below simply as TBL. The focus here is on incompressible flows, i.e. compressibility effects
[37–43] are not considered.

It is of interest to note that clarification on these questions is beneficial due to sev-
eral reasons. First, an analytical mean velocity model can represent corresponding direct
numerical simulation (DNS) and experimental information in the most accurate, com-
plete, and general way (see the further discussions in this paper). Second, it can contribute
to a deeper theoretical understanding by clarifying questions about the existence of log-
law variations of the mean velocity with constant coefficients and enabling conclusions
about the structure of wall-bounded turbulent flows at (infinitely) high Reynolds num-
bers (see the discussions in reference [44]). Third, it can significantly support the further
development of computational methods for turbulent flow simulations. This concerns,
for example, the development and validation of large-eddy simulation (LES) [45–50] and
hybrid dynamic LES methods [51–57], which are often seen to be without alternative if
complex turbulent flows at highReynolds numbers have to be analyzedwith computational
resources that do not allow the use of DNS (or resolved LES).

Compared to a huge variety of suggestionsmade before about how themean streamwise
velocity can be analytically described, see [30–36,58–63] and the references therein, there
are two relevant features of the developments presented here. First, in contrast to curve-
fitting, the approach is strictly focused on the identification of veritable physics: see the
detailed discussion of this question in Section 3.3. Second, latest DNS data (channel flow
DNS data of Lee and Moser [64,65]; pipe flow DNS data of Chin et al. [66]; TBL DNS
data of Sillero et al. [67,68]) are used for the development of the most accurate velocity
model, and latest experimental data (channel flow data of Schultz and Flack [69]; pipe
flow data of Hultmark et al. [70,71]; TBL data of Vallikivi et al. [72]) are used to test the
model performance up to extreme Reynolds numbers. It is worth noting that other DNS
data are also involved in the model validation reported below: channel flow DNS data of
Lozano-Durán and Jiménez [73,74]; pipe flow DNS data of Ahn et al. [75]; TBL DNS data
of Schlatter and Örlü [76,77].

The paper is organised as follows. The difficulty of deriving analytical conclusions about
mean velocity variations is illustrated in Section 2. The development of a new analytical
velocity model and its validation are presented in Section 3. Sections 4 and 5 sum-
marise answers obtained to the questions Q1–Q3 described above and overall conclusions,
respectively.
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2. The problem considered

To prepare the following developments, let us first make the problem considered more
specific. After a brief summary of basic log-law formulations, recentDNS and experimental
data are used to explain the problem related to finding convincing support for the log-law
(or, more general, an analytical model for the mean streamwise velocity).

2.1. The log-law

The log-law of the wall is often considered as a landmark result of fluid dynamics. It can be
derived on the basis of fairly general assumptions [14,78,79]. Themean streamline velocity
U+ is considered to be a function of the wall distance y and the friction Reynolds num-
ber Reτ . Here, y is normalised by δ, which is the half-channel height, pipe radius, or 99%
boundary layer thickness with respect to channel flow, pipe flow, and the TBL, respectively.
Hence, we have 0 ≤ y ≤ 1 for channel and pipe flow. The superscript + refers to inner
scaling, and we use y+ = Reτ y for the inner scaling wall distance. The friction Reynolds
number is defined by Reτ = uτ δ/ν, where uτ is the friction velocity and ν is the kine-
matic viscosity. For a sufficiently high Reynolds number it is assumed that U+ = f (y+)

if y � 1 and U+∞ − U+ = g(y) if y+ � 1. Here, U+∞ refers to the centreline/freestream
maximum velocity U+∞. Then, there will be an overlap region (usual notation applied for
differentiating various flow regions [2,14] is shown in Figure 1) where the two scalings
have to match, so we require equal derivatives y+∂U+/∂y+ = y+f ′(y+) = −yg′(y). The
latter result implies y+f ′(y+) = −yg′(y) = κ−1 because y+ and y are independent vari-
ables. Here, κ refers to the von Kármán constant. The integration of y+f ′(y+) = κ−1 then
implies the log-law

U+ = κ−1 ln y+ + B. (1)

B is a constant, and the integration of −yg′(y) = κ−1 implies the velocity defect law,

U+
∞ − U+ = −κ−1 ln y + Bdef , (2)

where Bdef refers to another constant. One consequence of the log-law is the friction law,
which is obtained by combining the latter two expressions. It reads [2,27,80]

U+
∞ = κ−1 (lnReτ + C) . (3)

Figure 1. Channel flow DNS data of Lee and Moser [64,65] are shown for Reτ = 5186 in conjunction
with layer notation used here.
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The constant C is given by C = κ(Bdef + B). Another consequence of the log-law applies
to the bulk velocity defined by U+

b = ∫ 1
0 U+ dy. The integration of Equation (1) leads to

U+
b = κ−1 (lnReτ − 1) + B. (4)

It is usual practice to consider a slightly extended version of Equation (1), which includes
the wake region [4,81]. This equation, which is referred to by Pullin et al. [81,82] as the
widely accepted log-wake law, reads

U+ = κ−1 ln y+ + B + �(y,Reτ ). (5)

Here, the function�(y,Reτ ), whichmay depend on the flow considered, accounts for wake
effects. Equation (5) is considered to be valid for y+

L /Reτ < y ≤ 1, where y+
L refers to a

Reynolds number dependent lower limit of applicability of Equation (5).

2.2. Log-law validation by experiments and DNS

Let us consider the use of experimental data with respect to validating the log-law. Figure 2
shows pipe flow experimental data (including very highReτ cases) of the von Kármán con-
stant κ with error bars, which are presented in Figure 5(a) of reference [27]. The κ values
were obtained by using five data sets (theHVBSdata are used in the study here:HVBS refers
to data presented by Hultmark et al. [70,86]) and three equivalent consequences of the log-
law: Equations (1), (3), and (4) were considered. In particular, the κ values were calculated
by least-squares fits. With respect to Equation (1), e.g.U+ was considered as a linear func-
tion of ln y+. It turns out that significantly different values of κ are obtained, depending on
the specific log-law formulation considered. In addition, relatively large uncertainty inter-
vals and discrepancies between results obtained from different data sets are reported [27].
Thus, this approach, which applies the highest Reynolds number data currently available,
does not provide convincing support for the validity of the log-law. To overcome these
issues, Bailey et al. [27] suggest to use improved instrumentation in order to obtain a more
precise κ estimate.

As an alternative to the latter, let us try to use accurate DNS data at the highest Reynolds
number available so far to address the validity of the log-law. To find an appropriate

Figure 2. The von Kármán constant κ (dots) calculated from pipe flow experiments by using five data
sets, see Figure 5(a) in reference [27]: ZS refers to Zagarola and Smits [83], MLJMS refers to McKeon
et al. [84], MMJS refers to Morrison et al. [85], HVBS refers to Hultmark et al. [70,86], and VS refers to
Vallikivi [87]. The error bars indicate the 95% confidence interval. The red values (on the left), green val-
ues (in the centre), and blue values (on the right) are based on least-squares fits to Equations (1), (3),
and (4), respectively.
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Figure 3. Figures (a), (b), (d) show κ = 1/(S+y+), B = U+ − ln y+/0.384, and � = U+ −
ln y+/0.384 − 4.295 according to Equations (1), (5), respectively, by using the channel flow DNS
data of Lee and Moser [64,65]. The colour code used for different Reτ is defined in (a). Figures (a) and (b)
illustrate the constants κ = 0.384 and B= 4.295 by pink dashed lines, respectively. Figure (c) shows κ

differently scaled for Reτ = 5186.

value for κ we consider Equation (1). Because B is constant, κ can be calculated by
κ = 1/(S+y+), where S+ = ∂U+/∂y+ refers to the characteristic shear rate. The varia-
tion of κ is shown in Figure 3(a) for different Reynolds numbers by using the channel
flow DNS data of Lee and Moser [64,65]. Here and in the following, no attempt is made
to apply DNS data for Reτ ≤ 500 because the use of the log-law is, basically, an inap-
propriate concept at such low Reynolds numbers. Only for the highest Reynolds number
case Reτ = 5186 we see for 370 ≤ y+ ≤ 670 a plateau region where κ is approximately
constant, κ ≈ 0.384. In particular, we have 0.385 ≥ κ ≥ 0.383 in this region. The use of
Equation (1) combined with κ = 0.384 enables the calculation of B = U+ − ln y+/0.384,
which is shown in Figure 3(b). A constant B value is the requirement to calculate κ via κ =
1/(S+y+). For Reτ = 5186, it may be seen that there is indeed an extended region where
we find a relatively constant B value, B=4.295. In particular, we have 4.29 ≤ B ≤ 4.30 for
240 ≤ y+ ≤ 1050.

However, the difficulties of this approach may be seen in Figure 3(c,d). With respect
to Reτ = 5186, the variation of κ is shown in Figure 3(c) in the slightly extended plateau
region of κ (see Figure 3(a)), this means for 300 ≤ y+ ≤ 800. This plot shows that κ =
1/(S+y+) is not strictly constant for the Reτ = 5186 case considered [88]. A discussion
of the asymptotic variation of 1/(S+y+) at extreme Reτ can be found in reference [44].
According to Equation (5), Figure 3(d) shows the difference � = U+ − ln y+/0.384 −
4.295 between the DNS mean velocity and the log-law combined with constant κ and
B. The Reτ effect is not systematic: the maximum of � for the highest Reτ = 5186 case
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deviates for relatively large y significantly from the maxima of other Reynolds number
cases.

Hence, current accurate DNS at a relatively high Reynolds number and experimental
data at much higher Reynolds numbers cannot be used straightforwardly to provide evi-
dence for the existence of a log-law that is characterised by a constant κ . The reason for that
is the way to address this problem based on Equations (1), (3), and (4). Equation (1) can
only be expected to be valid for sufficiently high Reynolds numbers (see reference [44]),
i.e. the variation of the mean velocity in the log-layer is still overwhelmed by significant
buffer layer and wake layer influences for the range of Reτ considered [3]. Similarly, with
respect to the use of Equations (3) and (4), the U+∞ data result from the superposition of
different contributions to themean velocity profile. In conclusion, the validation of the log-
law requires the exclusion of (viscous sublayer/buffer layer and wake layer) contributions
to the log-law in order to be able to separately study the log-law behaviour.

3. Model development and validation

As an alternative to existing developments, an analytical velocity model is introduced next.
Section 3.1 describes the model and its validation versus DNS and experimental data up
to high Reτ (see also Appendices A and B). The accuracy of physics described in this
way is addressed in Sections 3.2 and 3.3, and comparisons with other velocity models are
presented in Section 3.4.

3.1. Model development

The model for the mean streamwise velocity U+ described in Appendix A reads

U+ = U+
1 + 1

κ
ln

(
1 + Hy+/yκ

w + Ky

)
. (6)

Here, the von Kármán constant κ = 0.40 (see the end of Appendix A.1 and second
paragraph of Appendix A.2), yκ = 75.8, U+

1 is given by Equation (A.8), H is given by
Equation (A.11), w is given by Equations (A.18), (A.19), and K = y−1

κ eκU
+
1∞−C is a flow-

dependent constant given by K = (0.933, 0.687, 0.285) for channel, pipe, and TBL flow,
respectively. The mean velocity model given by Equation (6) will be referred to below
as probabilistic velocity model (PVM) to reflect relevant features to be discussed in
Section 4.1. The implied analytical model for the characteristic shear rate reads

S+ = S+
1 + S+

2 + S+
3 + SCP1 + SCP2 . (7)

Here, S+
1 , S

+
2 , S

+
3 are given by Equations (A.2), (A.12), (A.20), and SCP1 , SCP2 are given by

Equations (S.3), (S.7): see the SupplementaryMaterial. SCP1 and SCP2 are very small, but they
matter regarding the calculation of turbulent viscosities (see reference [44]).

One key ingredient of the approach applied to derive the mean velocity model is
the modal decomposition U+ = U+

1 + U+
2 + U+

3 of the velocity. Here, U+
1 is given by

Equation (A.8), U+
2 = κ−1 ln(1 + Hy+/yκ), and U+

3 = −κ−1 ln(w + Ky).
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(1) The U+
1 = U+

1 (y+) component reflects wall damping caused by the damping of
vertical velocity fluctuations in the viscous sublayer. U+

1 is constant (= 15.85) well
away from the wall and damped towards the wall (see Figure A.1(a)).

(2) U+
2 = U+

2 (y+) describes logarithmic velocity variations as predicted by log-law
theory, but modified by H. H can be interpreted as transition probability for the
onset of log-law variations. The appearance of such a transition probability is plau-
sible: it provides the transition between two physically very different mechanisms
(damping by the wall and logarithmic mean flow).

(3) U+
3 = U+

3 (y) describes variations in response to outer scaling. The term Ky deter-
mines the asymptotic wake contribution. Its linearity can be explained by the
combination of U+

2 and U+
3 , which shows that Ky balances asymptoticallyHy+/yκ

(which enables a constant U+∞). The contribution 0 ≤ w ≤ 1 describes a transi-
tion probability (see the discussion of Fw = 1 − w in Section 3.4). Its appearance
is also plausible: it provides the transition between two physically very different
mechanisms: logarithmic mean flow and the asymptotic wake stage.

Another key ingredient of the approach applied is the inclusion of governing equations
and identification of linear physics regimes related to themodal velocity decomposition.

(1) The U+
1 = U+

1 (y+) contribution to U+ was obtained via the linear varia-
tion ln(−〈u′v′〉+) ∝ ln y+ in conjunction with the momentum balance, see
Appendix A.1. The transition function 0 ≤ −〈u′v′〉+1 ≤ 1 was justified by consid-
ering a corresponding linear relationship (see Figure A.1(c)).

(2) The U+
2 (y+) = κ−1 ln(1 + Hy+/yκ) contribution to U+ was obtained via the lin-

ear variation U+ ∝ ln y+, see Appendix A.1. The structure of the transition func-
tion 0 ≤ H ≤ 1 was justified by considering a corresponding linear relationship
(see Figure A.1(d)).

(3) TheU+
3 (y) = −κ−1 ln(w + W0) contribution toU+ was determined in Appendix

A.3. The asymptotic wake function W0 was identified as linear function W0 =
Ky. The structure of the transition functions 0 ≤ w ≤ 1 was justified by linear
relationships presented in Figure A.4.

A comprehensive comparison of the velocity model given by Equation (6) versus both
experimental data and DNS can be found in Appendix B. These comparisons are per-
formed with respect to bothmoderate and high Reτ . Overall, these comparisons with DNS
and experiments reveal an impressive performance of the velocity model.

3.2. Observational physics criteria

After demonstrating that the velocity model obtained is in excellent agreement with DNS
and experimental data, let us have a closer look at the accuracy of the velocity model
obtained. It is known that the derivation of a complete analytical velocity model from the
non-filtered Navier-Stokes equations is not possible for the flows (their boundary condi-
tions) and Reτ considered here [89]. Hence, the only possible way to address this problem
is to use DNS and experimental data for the model design. The usual way to address such a
problem is to use curve fitting. According to its general understanding, this means to find
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an analytical curve that optimally reflects data without having clear evidence that the curve
applied correctly agrees with the real physics. It is obvious that this approach, although it
can be very beneficial, has a limited predictive power because of its lack of theoretical basis.

So there is the question of how it is possible to derive veritable physics for the case
considered here. The following criteria for veritable physics derived from observations are
suggested.

(C1) A first criterion is that a model needs to represent a unique solution that is con-
sistent with all relevant physics constraints (governing equations and boundary
conditions).

(C2) A second criterion should be proof that both modelled variables and their relevant
derivatives accurately represent corresponding observations.

(C3) A third criterion should be evidence according to (C2) for variations of model
variables in response to all relevant scalings (inner and outer scalings for the case
considered).

In particular, the second criterion (C2) is based on the general understanding of physics
based conclusions to represent consequences of equations based on physical principles
(combined with the fact that such equations usually relate derivatives of variables con-
sidered). The most convenient way to demonstrate this is to provide such evidence via
scatterplots of observed versus predicted variables. Ideally, such plots result in 1:1 lines.

3.3. Observational physics validation

Does the velocity model presented here satisfy the criteria for veritable physics derived
from observations described in the preceding paragraph? The first criterion is satisfied by
the way in which this model was constructed. The question about whether or not the other
two criteria are satisfied will be addressed in two steps. First (to focus in the following
on velocity variations in response to inner scaling), the suitability of modelling velocity
variations in response to outer scaling is considered. One way of doing this is to consider
the deviation w from the asymptotic wake functionW0 = Ky, which is shown in Figure 4.
In particular, this figure shows themodelledw versusw obtained from the observations for
the same data as used in Figure A.3. Here,w obtained from the observations was calculated
by replacing the modelled velocity in Equation (6) by the observed velocity. The second
step focuses on the inner contributions (U+)in = U+ − U+

3 and (S+)in = S+ − S+
3 of the

velocity and its gradient. In particular, Figure 5(a) shows the modelled versus observed
velocity obtained from DNS for the three flows and Reynolds numbers considered before.
Figure 5(b–d) show corresponding velocity gradients for the highest Reynolds numbers of
these DNS data for all three flows (corresponding curves at lower Reynolds numbers look
very similar).

The evaluation of modelled wake physics in Figure 4 reflects the same data scattering
seen in Figure A.3. The basic observation is that the observations fluctuate about the corre-
sponding 1:1 lines, i.e. the wake physics is correctly reflected by the correspondingmodels.
Given the fluctuations involved here, an evaluation of modelled versus observed gradients
ofw does not appear to bemeaningful. Another view point of this question is to ask how the
wake physics in channel/pipe flow and the TBL are related. This question is addressed in
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Figure 4. DNS (wDNS) and experimental (wEXP) wake functions w are shown versus modelled (wMOD)
wake functions for the given Reynolds numbers in (a), (b), and (c) for channel flow, pipe flow, and the
TBL, respectively. The DNS and experimental wake functions were obtained by replacing the modelled
velocity by the velocity given by DNS data of Lee and Moser [64,65], DNS data of Chin et al. [66], and
Pitot experimental data of Vallikivi et al. [72]), respectively. In all plots, black dashed lines show 1:1 lines.
Figure (d) shows themodelled 1−w for channel/pipe flowand the TBL, respectively. The horizontal black
dashed line shows 1−w= 1. The inset shows the domain expansion factor E = dw/y.

terms of Figure 4(d) which shows the wake flow transition probability Fw = 1 − w, which
varies between zero and one, for channel/pipe flow and the TBL, respectively. We see the
samemechanism of wake physics, which is only slightly modified by the domain size effect
(a bounded domain for channel/pipe flow versus an unbounded domain for the TBL). It
is worth noting that the collapse of Fw,CP and Fw,BL for relatively small y values provides
significant support for the reflection of wake physics by these models.

A better understanding of flow effects seen in Figure 4(d) can be obtained in the fol-
lowing way. It is obvious that the TBL Fw,BL is very similar to the channel/pipe Fw,CP,
but the transition happens at higher wall distances. So what is the wall distance dw such
that wBL(dw) = wCP(y)? According to wBL(dw) = wCP(y), this wall distance dw ≥ y can
be obtained as solution of the equation dw(0.9 + dw + 1.09d2w) = − lnwCP(y). A simple
way to solve this cubic equation in dw is to solve the quadratic equation d2w + 0.9dw =
− lnwCP(y) − 1.09d3w iteratively starting with dw = y in the d3w term. The solution quickly
converges if the d3w term in the quadratic equation is updated by replacing dw by the mean
value of the new and old dw values. The resultE = dw/y is shown in the inset in Figure 4(d).
This plot demonstrates that the transition to the asymptotic wake function Ky is the same
in all three flows with the exception that it happens in the TBL at higher wall distances
because of the unbounded domain (there is no ‘pressure’ imposed by a bounded domain).
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Figure 5. Figure (a) shows the modelled (superscript MOD) and DNS (superscript DNS) inner velocity
(U+)in = U+ − U3 for channel flow, pipe flow, and the TBL, respectively, for the given Reτ by red lines.
Data at different Reτ are moved up by +5. Figures (b), (c), and (d) show the corresponding shear rate
(S+)in = S+ − S3 (red lines) for channel flow, pipe flow, and the TBL, respectively, for the given Reτ . Cor-
responding cyan lines show corresponding predictions of Monkewitz’s velocity model [36]. In all plots,
black dashed lines show 1:1 lines, and green lines show y+/50.

The factor 1 ≤ E ≤ 1.9 will be referred to below as domain expansion factor to refer to the
expanding TBL. The deviation of E from one over a significant portion of the flow field
indicates the long-range influence of the domain length.

With respect to inner velocity variations, the evaluation of themodel physics by Figure 5
provides impressive support for the correctness of modelled physics. The modelled versus
observed velocity plot in Figure 5(a) shows that there is basically no deviation (and in
particular no systematic) from the 1:1 lines for all three flows considered. The (S+)in plots
of the velocity derivative in Figure 5(b–d) lead to the same conclusion: the velocity model
accurately reflects the physics.

3.4. Comparisons with empirical velocitymodels

The ability of the velocitymodel presented to satisfy the criteria of veritable physics derived
from observations is certainly not a general feature of other velocity models (designed
on an empirical basis). For example, the model of Chauhan et al. [35] does not satisfy
the first criterion (see the modelling of the wake component). In an attempt to overcome
these issues,Monkewitz recently suggested an improved velocitymodel [36]. Figure 5(b–d)
demonstrate the reflection of physics by this model by focusing on inner velocity varia-
tions. For channel and pipe flow, this model reflects physics incorrectly for small (S+)in,
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Figure 6. Figure (a) shows the PDF f for channel flow, pipe flow, and the TBL, respectively, for Reτ = 500
(dashed line) andReτ = 105 (solid line). Figure (b) shows the PDF−w′ for channel/pipe flowand the TBL,
respectively.

where the model predicts negative (S+)in. The reason for this is the consideration of dif-
ferences between κ values used for the logarithmic inner velocity variation and κ values
based on the friction law (�U+

log,Ch and �U+
log,P in reference [36]), see the explanations at

the end of Appendix A.2. For all three flows, Monkewitz’s model differs from the 1:1 line
for 8 ≤ y+ ≤ 27, as may be seen by taking reference to the corresponding y+/50 curves in
Figure 5(b–d). Although the difference is relatively small, it indicates deficiencies regarding
the correct reflection of physics.

A usual notion is that the physics of wake contributions is less clear than the physics
of velocity variations in inner scaling. An improved insight into the mechanism of wake
contributions was recently offered [90]. By following this approach we introduce the
probability F = U+

3 /(U+∞ − U+
1 − U+

2 ). By using F, the mean velocity model reads

U+ = (U+
1 + U+

2 )(1 − F) + FU+
∞. (8)

This equation reflects the transition between U+
1 + U+

2 and U+∞. Given F, we can define
a probability density function (PDF) by f = dF/dy. In Krug et al. [90], the PDF f had
to be assumed and parametrised: for all the three flows considered here, f was assumed
to be only a function of y, normally distributed and combined with parameters fitted to
experiments. By using the velocity model presented here, the PDF f can be calculated from
the model. It is shown in Figure 6(a) for the three flows considered and different Reynolds
numbers. It appears that these PDFs are affected by the Reynolds number and not normally
distributed. The TBL PDFhas a shape that is relatively similar to a normal distribution. The
corresponding channel and pipe flowPDFs cannot be normally distributed because of their
bounded domain (bounded by zero and one). However, it turns out that Reynolds number
effects have a relatively small influence on the PDF. In particular, the three PDFs rapidly
converge to their asymptotic PDF, which is determined by F∞ = ln(w + Ky)/ln(Ky).

With respect to the latter discussion it is of interest to compare the PDF f with the PDF
−w′ which follows from the probability Fw = 1 − w for the onset of asymptotic wake vari-
ations. The corresponding plots are shown in Figure 6(b). The f PDFs are affected by the
Reynolds number, U+∞ (via the flow considered), and the available domain in probability
space. Figure 6(b) shows that the −w′ PDF is much more universal than f : it is unaffected
by the Reynolds number, and the same for channel and pipe flow. The only influence that
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is left is the domain in probability space, which leads to the modifications of the PDF −w′
for the TBL.

4. Implications

After presenting and validating the velocity model in Section 3, let us use the findings
obtained to address the questions Q1 (mean velocity structure) in Section 4.1 and both Q2
(mean flow universality) and Q3 (consistency of log-law theory) in Section 4.2.

4.1. Mean flow structure: deterministic and probabilistic views

The velocity model Equation (6) was already discussed in Section 3.1, second paragraph.
Let us prepare a more detailed discussion of the mean velocity structure in the following
paragraphs by an identical rewriting of Equation (6),

U+ − U+
∞ = 1

κ
ln (K∗Y) . (9)

Here, K∗ = y−1
κ eσκU+

1∞−C is introduced, which differs from K = y−1
κ eκU

+
1∞−C by the

appearance of σ , and Y is introduced. The latter two variables, Y and σ , are defined by
the expressions

Y = yκRe−1
τ eκ(U+

1 −U+
1∞)

(
1 + Hy+/yκ

)
, σ = 1 − ln

(
1 − Fw + Ky

)
/(κU+

1∞), (10)

which involve Fw = 1 − w. Here, ReτY is only a function of y+ and σ is only a function
of y. Plots of Y and σ are shown in Figure 7. We see that Y and σ are well characterised
by their log-law representatives y and 1, respectively. There are deviations, see the inset
of Figure 7(a,b), but these deviations are relatively small. In particular, the relative error
eY of ReτY compared to y+ is eY ≤ (1, 0.1)% for y+ = (1700, 104). The comparison of
Equation (9) with the velocity defect law Equation (2) shows, that the mean velocity has,
basically, a log-law structure. However, this finding does not mean that wall damping and
wake effects (represented by deviations of Y and σ from y and 1) have insignificant effects.

Figure 7. The functions Y and σ defined by Equation (10) are shown in (a) for the given Reτ and in (b)
for the three flows considered, respectively. The inset in (a) shows ReτY versus y+ (solid line) compared
to the 1:1 line (dashed line).
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As shown in reference [44], these effects essentially determine the structure of turbulence
related to the mean flow (e.g. the turbulence production and turbulent viscosities). Thus,
an accurate representation of these effects is clearly relevant.

A probabilistic view point is helpful to obtain a deeper understanding of the mean flow
structure. To prepare this discussion we introduce

FM(U+) = eκU+ − 1
eκU+∞ − 1

= α
[
eκ(U+−U+∞) − 1

]
+ 1 = α [K∗Y − 1] + 1, (11)

which represents the distribution function for the distribution of mean velocities along the
wall-normal direction [91–95]. Its PDF fM(U+) = dFM/dU+ is given by

fM(U+) = κeκU+

eκU+∞ − 1
= ακeκ(U+−U+∞) = ακK∗Y . (12)

The terms in Equations (11) and (12) represent identical rewritings that involve α = (1 −
e−κU+∞)−1 = (1 − 1/(Reτ eC))−1, and Equation (9) is used. The normalisation constraint
for fM recovers the definition of α.

The PDF fM represents a statistically most-likely PDF that maximises the related
entropy [51,91,92,94,96]. The parameter κ that appears in Equations (11) and (12) can
be chosen in accordance with global conditions on fM [96]. One global condition is given
by the mean

∫ U+∞
0 U+fM dU+ = αU+∞ − κ−1 over the velocity distribution Equation (12).

Another such global condition is given by the entropy SE = 1 − ln κ + κU+∞(1 − α) −
lnα, which follows from Equation (12) combined with the definition of the entropy SE =
− ∫ U+∞

0 ln(fM)fM dU+. For the case considered, the definition of both themean and entropy
SE is simply a matter of convenience. Therefore, we continue here to identify κ to be the
von Kármán constant as used before. Then, for the flows and range Reτ ≥ 500 considered,
the effect of Re−1

τ e−C in α is smaller than 0.025%. Thus, we have α = 1, which implies
FM = K∗Y , fM = κK∗Y , and SE = 1 − ln κ . We observe that the von Kármán constant
κ = e1−SE represents an entropy measure.

The expressions obtained in the preceding paragraph for the entropy SE and distribution
function FM do not involve any specification of amean flowmodel.Which implications for
the mean flow structure arise from SE and FM? A first implication is that the von Kármán
constant needs to be the same for all three flows considered because the entropy needs to be
the same (the use of different κ values for different flows would result in different entropies,
which is unphysical). A second implication is that FM should be a linear function of y in
absence of boundary effects (wall damping and wake effects): all velocity values need to be
equally likely in a region unaffected by boundary effects. These requirements are satisfied
by FM = K∗Y , which turns into FM = Ky in absence of boundary effects (see the discussion
of σ and Y above). In addition to these requirements, FM = K∗Y correctly involves wall
damping and wake effects as demonstrated above (it is worth noting that FM curves show
amaximum FM = 1 for all three flows considered). The relevant result of this discussion is
the conclusion that the constraints of equal entropies and equally likely velocity values in
a region unaffected by boundary effects impose a universal log-law structure of the mean
flow.

Another relevant observation is the following. The distribution function FM = K∗Y
is a product of K∗ (which depends only on y), ReτY (which depends only y+), and
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Re−1
τ . This means there is no interaction between velocity variations in response to inner

and outer scaling. A more comprehensive discussion of implications of this fact can be
found in reference [44] in conjunction with a discussion of active and inactive turbulence
interactions.

4.2. Mean flow universality and log-law theory

How universal are the mean flow equations presented in Section 4.1, and how universal is
the log-law theory? The latter questions are the concern of intense recent discussions. For
example,Monkewitz [36] suggested the following picture. Velocity variations in inner scal-
ing show an internal discrepancy for channel and pipe flowwith respect to local and global
log-law formulations (characterized by different κ values). Only the TBL is consistent in
this regard. The logarithmic variations of the three flows considered are different. Hence,
velocity variations in outer scaling are different for the three flows considered without any
common component. So this picture corresponds to the view that the three flows have not
much in common regarding their structure and there are differences between local and
global log-law formulations with respect to channel and pipe flow. This would mean that
the structure of different but similar wall-bounded flows is different. The results reported
here with respect to these questions support a different view.

First, regarding the mean flow universality, we observe the following. Via the wake con-
tribution U+

3 = −κ−1 ln(1 − Fw + Ky), the influence of the flow considered is limited to
the constant K = y−1

κ eκU
+
1∞−C and the domain expansion factor E, which moves the tran-

sition probability Fw for the TBL to higher wall distances in response to the unbounded
domain. In other words, Fw has the same variation for all three flows considered, the
only difference regarding the TBL is that the transition is postponed. Thus, the influence
of flow effects on the mean flow is limited to the minimum: the difference of having a
bounded or unbounded domain, and the variation range of mean velocity values allowed
by the geometry (which is reflected byK−1 [96]). Thus, the remaining velocity variations in
inner scaling, U+

1 and U+
2 , which include logarithmic variations, are the same for all three

flows considered. Second, regarding the universality of log-law theory (see the discussion
in Section 2), the results reported here do not indicate discrepancies of various log-law
formulations. For the three flows, we find the same logarithmic inner-scaled velocity vari-
ations. There is no discrepancy between local logarithmic velocity variations and global
friction law and bulk velocity variations.

5. Concluding remarks

The understanding of themathematical physical mean flow structure of wall-bounded tur-
bulent flows still faces open questions. Three questions (Q1-Q3, see the introduction) were
considered here: the physical mean flow structure of wall-bounded flows, the universality
of the mean flow, and the validity and consistency of log-law theory.

The latter questions were addressed for three canonical wall-bounded turbulent flows
(channel flow, pipe flow, and the TBL) by using latest DNS and experimental data [64–77]
at moderate and high Reynolds numbers, respectively. An analytical mean flowmodel was
derived, which was demonstrated to be in excellent agreement with all DNS and exper-
imental data applied. Specific emphasis was placed on the question of how accurately
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the physics of wall-bounded turbulent flows is reflected by the analytical velocity model
obtained. This question was addressed, first, by formulating criteria for veritable physics
derived fromobservations, and, second, by demonstrating that the velocitymodel obtained
satisfies these criteria.

Detailed answers to the Q1–Q3 questions considered were provided in Section 4. In
short, the following answers were obtained.

(Q1) A probabilistic interpretation of the mean flow structure shows that the physical
constraints of equal entropies and equally likely mean velocity values in a region
unaffected by boundary effects impose a universal log-law structure. The distribu-
tion function of mean velocity values consists of independent modes that account
of inner-scaled and outer-scaled velocity variations, i.e. there is no interaction
between these variations. The latter observation reflects the interaction of active
and inactive turbulence described in reference [44].

(Q2) The structure of wall-bounded flows is much more universal than previously
expected. Flow effects are limited to the minimum: the difference of having a
bounded or unbounded domain, and the variation range of mean velocity val-
ues allowed by the geometry. The three flows considered have the same entropy
SE because of the universal value of the von Kármán constant κ = e1−SE .

(Q3) The results reported here do not indicate any discrepancies of different log-law for-
mulations: for the three flows, we find the same logarithmic velocity variations in
inner scaling, and there is no discrepancy between local logarithmic velocity varia-
tions, and global friction law and global bulk velocity variations. It is worth noting
that these conclusions resolve issues regarding these questions pointed out recently
on the basis of previous data [36].

It is worth noting that the analysis presented here does not deal with two obvious and
relevant extensions: the inclusion of turbulence statistics related to the mean flow, and the
discussion of implications of results obtained here with respect to the asymptotic physics
at extreme Reτ . Several questions related to the latter extensions (e.g. regarding the self-
similar asymptotic flow structure, the convergence of flow statistics to the asymptotic
state, and the physical flow organisation at extreme Reτ ) are the concern of a companion
paper [44].

Acknowledgments

The author is very thankful to Professors Flack [69], Chung [47], Chin [66], Sung [75], Hultmark
and Vallikivi [72] for making data for comparisons available. I am very thankful to the referees for
their helpful suggestions for improvements.

Disclosure statement

No potential conflict of interest was reported by the author.

Funding

The author would like to acknowledge partial support through NASA’s NRA research opportuni-
ties in aeronautics program (Grant No. NNX12AJ71A with Dr. P. Balakumar as technical officer)
and the National Science Foundation (DMS - CDS&E-MSS, Grant No. 1622488 with Dr. Y. Zeng as



944 S. HEINZ

Technical Officer). Substantial support from the Hanse-Wissenschaftskolleg, Institute for Advanced
Study (Delmenhorst, Germany, Technical Monitor: W. Stenzel) is gratefully acknowledged; Langley
Research Center (Grant No. NNX12AJ71A) andDirectorate forMathematical and Physical Sciences
(Grant No. 1622488).

References

[1] von Kármán T. Mechanische Ähnlichkeit und Turbulenz [Mechanical similitude and tur-
bulence]. In Nachrichten der Akademie der Wissenschaften Göttingen, Math.-Phys. Klasse;
1930. p. 58–76. [Technical memorandum N611,National Advisory Committee for Aeronau-
tics,Washington; 1931].

[2] Pope SB. Turbulent flows. Cambridge: Cambridge University Press; 2000.
[3] Marusic I, McKeon BJ, Monkewitz PA, et al. Wall-bounded turbulent flows at high Reynolds

numbers: recent advances and key issues. Phys Fluids. 2010;22(6):065103/1–065103/24.
[4] Smits AJ, McKeon BJ, Marusic I. High-Reynolds number wall turbulence. Annu Rev Fluid

Mech. 2011;43(1):353–375.
[5] Jiménez J. Near-wall turbulence. Phys Fluids. 2013;25(10):101302/1–101302/28.
[6] Wallace JM. Highlights from 50 years of turbulent boundary layer research. J Turbul.

2013;13(53):1–70.
[7] Zagarola MV, Perry AE, Smits AJ. Log laws or power laws: the scaling in the overlap region.

Phys Fluids. 1997;9(7):2094–2100.
[8] Buschmann MH, Gad el Hak M. Generalized logarithmic law and its consequences. AIAA J.

2003a;41(1):40–48.
[9] Buschmann MH, Gad el Hak M. Debate concerning the mean-velocity profile of a turbulent

boundary layer. AIAA J. 2003b;41(4):565–572.
[10] BuschmannMH, Gad el HakM. Recent developments in scaling of wall-bounded flows. Prog

Aerospace Sci. 2007;42(5-6):419–467.
[11] Buschmann MH, Gad el Hak M. Evidence of nonlogarithmic behavior of turbulent channel

and pipe flow. AIAA J. 2009;47(3):535–541.
[12] Buschmann MH, Gad el Hak M. Turbulent boundary layers: is the wall falling or merely

wobbling?Acta Mech. 2011;218(3–4):309–318.
[13] George WK. Is there a universal log law for turbulent wall-bounded flows? Phil Trans R Soc

A. 2007;365(1852):789–806.
[14] Davidson PA. Turbulence: an introduction for scientists and engineers. Oxford: Oxford

University Press; 2004.
[15] Morrison JF. The interaction between inner and outer regions of turbulent wall-bounded flow.

Phil Trans R Soc A. 2007;365(1852):683–698.
[16] OberlackM.A unified approach for symmetries in plane parallel turbulent shear flows. J Fluid

Mech. 2001;427:299–328.
[17] Bernardini M, Pirozzoli S, Orlandi P. Velocity statistics in turbulent channel flow up to Reτ =

4000. J Fluid Mech. 2014;742:171–191.
[18] Townsend AA. The structure of turbulent shear flow. 2nd ed. Cambridge: Cambridge Univer-

sity Press; 1976.
[19] Marusic I, Monty JP, Hultmark M, et al. On the logarithmic region in wall turbulence. J Fluid

Mech. 2013;716:R3/1–R3/11.
[20] Woodcock JD, Marusic I. The statistical behaviour of attached eddies. Phys Fluids.

2015;27(1):015104/1–015104/24.
[21] Yang XIA, Marusic I, Meneveau C. Hierarchical random additive process and logarithmic

scaling of generalized high order, two-point correlations in turbulent boundary layer flow.
Phys Rev Fluids. 2016;1:024402/1–024402/15.

[22] Barenblatt GI. Scaling, self-similarity and intermediate asymptotics. Cambridge: Cambridge
University Press; 1996.

[23] Barenblatt GI. Scaling laws for fully developed turbulent shear flows. Part 1: basic hypotheses
and analysis. J Fluid Mech. 1993;248:513–520.



JOURNAL OF TURBULENCE 945

[24] Barenblatt GI, Prostokishin VM. Scaling laws for fully developed turbulent shear flows. Part
2: processing of experimental data. J Fluid Mech. 1993;248:521–529.

[25] Kazakov KA. The mean velocity profile of near-wall turbulent flow: is there anything in
between the logarithmic and power laws? J Turbul. 2016;17(11):1015–1047.

[26] Klewicki J, Fife P, Wei T. On the logarithmic mean profile. J Fluid Mech. 2009;638:
73–93.

[27] Bailey SCC, Vallikivi M, Hultmark M, et al. Estimating the value of von Kármán’s constant in
turbulent pipe flow. J Fluid Mech. 2014;749:79–98.

[28] Wu Y, Chen X, She Z-S, et al. On the Karman constant in turbulent channel flow. Phys Scr.
2013;T155:014009/1–014009/4.

[29] Luchini P.Universality of the turbulent velocity profile. PhysRev Lett. 2017;118(22):224501/1–
224501/4.

[30] Musker AJ. Explicit expression for the smooth wall velocity distribution in a turbulent
boundary layer. AIAA J. 1979;17(6):655–657.

[31] Chauhan KA, Nagib HM, Monkewitz PA. On the composite logarithmic profile in zero pres-
sure gradient turbulent boundary layers. 45th AIAA aerospace sciences meeting and exhibit,
AIAA Paper 07-532, Reno, NV, 2007.

[32] Monkewitz PA, ChauhanKA,NagibHM. Self-consistent high-Reynolds-number asymptotics
for zero-pressure-gradient turbulent boundary layers. Phys Fluids. 2007;19(11):115101/1–
115101/12.

[33] Nagib HM, Chauhan KA. Variations of von Kármán coefficient in canonical flows. Phys
Fluids. 2008;20(10):101518/1–101518/10.

[34] Monkewitz PA, Chauhan KA, Nagib HM. Comparison of mean flow similarity laws in
zero pressure gradient turbulent boundary layers. Phys Fluids. 2008;20(10):105102/1–105
102/16.

[35] Chauhan KA, Monkewitz PA, Nagib HM. Criteria for assessing experiments in zero pressure
gradient boundary layers. Fluid Dyn Res. 2009;41:021404/1–021404/23.

[36] Monkewitz PA. Revisiting the quest for a universal log-law and the role of pressure gradient
in canonical wall-bounded turbulent flows. Phys Rev Fluids. 2017;2(9):094602/1–094602/17.

[37] Coleman G, Kim J, Moser R. A numerical study of turbulent supersonic isothermal-wall
channel flow. J Fluid Mech. 1995;305:159–183.

[38] Huang P, Coleman G, Bradshaw P. Compressible turbulent channel flows: DNS results and
modeling. J Fluid Mech. 1995;305:185–218.

[39] Foysi H, Sarkar S, Friedrich R. Compressibility effects and turbulence scalings in supersonic
channel flow. J Fluid Mech. 2004;509:207–216.

[40] Ghosh S, Foysi H, Friedrich R. Compressible turbulent channel and pipe flow: similarities and
differences. J Fluid Mech. 2010;648:155–181.

[41] Li X-L, Fu D-X, Ma Y-W, et al. Direct numerical simulation of compressible turbulent flows.
Acta Mech Sin. 2010;26(6):795–806.

[42] Zhang Y-S, BiW-T, Hussain F, Li X-L, She Z-S.Mach-number-invariant mean-velocity profile
of compressible turbulent boundary layers. Phys Rev Lett. 2012;109(5):054502/1–054502/4.

[43] Modesti D, Pirozzoli S. Reynolds andMach number effects in compressible turbulent channel
flow. Int J Heat Fluid Flow. 2016;59(6):33–49.

[44] Heinz S. On mean flow universality of turbulent wall flows. II. Asymptotic flow analysis.
(submitted), 2019;20(2):174–193.

[45] Kalitzin G,Medic G, Templeton JA.Wall modeling for LES of high Reynolds number channel
flows: what turbulence information is retained? Comput Fluids. 2008;37:809–815.

[46] Pantano C, Pullin DI, Dimotakis PE, Matheou G. LES approach for high Reynolds num-
ber wall-bounded flows with application to turbulent channel flow. J Comput Phys.
2008;227:9271–9291.

[47] Chung D, Pullin DI. Large-eddy simulation and wall modelling of turbulent channel flow. J
Fluid Mech. 2009;631:281–309.

[48] Chung D, McKeon BJ. Large-eddy simulation of large-scale structures in long channel flow. J
Fluid Mech. 2010;661:341–364.



946 S. HEINZ

[49] Chen S, Xia Z, Pei S, et al. Reynolds-stress-constrained large-eddy simulation ofwall-bounded
turbulent flows. J Fluid Mech. 2012;703:1–28.

[50] Yang XIA, Sadique J, Mittal R, Meneveau C. Integral wall model for large eddy simulations of
wall-bounded turbulent flows. Phys Fluids. 2015;27(2):025112/1–025112/32.

[51] Heinz S. Statistical mechanics of turbulent flows. Berlin, Heidelberg, New York, Tokyo:
Springer-Verlag; 2003.

[52] Heinz S. Unified turbulence models for LES and RANS, FDF and PDF simulations. Theor
Comput Fluid Dyn. 2007;21(2):99–118.

[53] Heinz S. Realizability of dynamic subgrid-scale stress models via stochastic analysis. Monte
Carlo Methods Appl. 2008;14(4):311–329.

[54] Heinz S, Gopalan H. Realizable versus non-realizable dynamic subgrid-scale stress models.
Phys Fluids. 2012;24(11):115105/1–115105/23.

[55] Gopalan H, Heinz S, Stöllinger M. A unified RANS-LES model: computational development,
accuracy and cost. J Comput Phys. 2013;249:249–279.

[56] Mokhtarpoor R, Heinz S, Stoellinger M. Dynamic unified RANS-LES simulations of high
Reynolds number separated flows. Phys Fluids. 2016;28(9):095101/1–095101/36.

[57] Mokhtarpoor R, Heinz S. Dynamic large eddy simulation: stability via realizability. Phys
Fluids. 2017;29(10):105104/1–105104/22.

[58] Reichardt H. Vollständige Darstellung der turbulenten Geschwindigkeitsverteilung in glatten
Leitungen. ZAMM - J Appl Math Mech. 1951;31(7):208–219.

[59] Afzal N, Seena A, Bushra A. Power law velocity profile in fully developed turbulent pipe and
channel flows. ASCE J Hydraul Eng. 2007;133(9):1080–1086.

[60] Panton RL. Composite asymptotic expansions and scaling wall turbulence. Phil Trans R Soc
A. 2007;365(1852):733–754.

[61] Silva Freire AP. The persistence of logarithmic solutions in turbulent boundary layer systems.
J Braz Soc Mech Sci Eng. 2016;38(5):1359–1399.

[62] Nickels TB. Inner scaling for wall-bounded flows subject to large pressure gradients. J Fluid
Mech. 2004;521:217–239.

[63] Guo J. Eddy viscosity and complete log-law for turbulent pipe flow at high Reynolds numbers.
J Hydraulic Res. 2017;55(1):27–39.

[64] Lee M, Moser RD. Direct numerical simulation of turbulent channel flow up to Reτ = 5200.
J Fluid Mech. 2015;774:395–415.

[65] Available from: http://turbulence.ices.utexas.edu, 2016a.
[66] Chin C, Monty JP, Ooi A. Reynolds number effects in DNS of pipe flow and comparison with

channels and boundary layers. Int J Heat Fluid Flow. 2014;45:33–40.
[67] Sillero JA, Jiménez J, Moser RD. One-point statistics for turbulent wall-bounded flows at

Reynolds numbers up to δ+ ≈ 2000. Phys Fluids. 2013;25(10):105102/1–105102/16.
[68] Available from: http://torroja.dmt.upm.es/turbdata/blayers, 2016b.
[69] Schultz MP, Flack KA. Reynolds-number scaling of turbulent channel flow. Phys Fluids.

2013;25(2):025104/1–025104/13.
[70] HultmarkM, Vallikivi M, Bailey SCC, et al. Logarithmic scaling of turbulence in smooth-and

rough-wall pipe flow. J Fluid Mech. 2013;728:376–395.
[71] Available from: https://smits.princeton.edu/superpipe-turbulence-data, 2016.
[72] Vallikivi M, HultmarkM, Smits AJ. Turbulent boundary layer statistics at very high Reynolds

number. J Fluid Mech. 2015;779:371–389.
[73] Lozano-Durán A, Jiménez J. Effect of the computational domain on direct simulations of

turbulent channels up to Reτ = 4200. Phys Fluids. 2014;26(1):011702/1–011702/8.
[74] Available from: http://torroja.dmt.upm.es/channels/data, 2016c.
[75] Ahn J, Lee JH, Lee J, Kang J, Sung HJ. Direct numerical simulation of a 30R long turbulent

pipe flow at Reτ = 3008. Phys Fluids. 2015;27(6):065110/1–065110/14.
[76] Schlatter P, Örlü R. Assessment of direct numerical simulation data of turbulent boundary

layers. J Fluid Mech. 2010;659:116–126.
[77] Available from: http://www.mech.kth.se/ pschlatt/data/readme.html, 2016d.



JOURNAL OF TURBULENCE 947

[78] Millikan CB. A critical discussion of turbulent flows in channels and circular tubes. In Pro-
ceedings of the 5th international congress of applied mechanics. New York: Wiley; 1938.
p. 386–392.

[79] Jiménez J, Moser RD. What are we learning from simulating wall turbulence? Phil Trans R
Soc A. 2007;365(1852):715–732.

[80] Bailly C, Comte-Bellot G. Turbulence. Cham, Heidelberg, New York, Dordrecht, London:
Springer; 2015.

[81] Pullin DI, Inoue M, Saito N. On the asymptotic state of high Reynolds number, smooth-wall
turbulent flows. Phys Fluids. 2013;25(1):015116/1–015116/9.

[82] Coles D. The law of the wake in the turbulent boundary layer. J Fluid Mech.
1956;1(2):191–226.

[83] Zagarola MV, Smits AJ. Mean-flow scaling of turbulent pipe flow. J Fluid Mech.
1998;373:33–79.

[84] McKeon BJ, Li J, JiangW, et al. Further observations on themean velocity distribution in fully
developed pipe flow. J Fluid Mech. 2004;501:135–147.

[85] Morrison JF, McKeon BJ, Jiang W, et al. Scaling of the streamwise velocity component in
turbulent pipe flow. J Fluid Mech. 2004;508:99–131.

[86] HultmarkM,VallikiviM, Bailey SCC, et al. Turbulent pipe flow at extremeReynolds numbers.
Phys Rev Lett. 2012;108:094501.

[87] Vallikivi M. Wall-bounded turbulence at high Reynolds numbers [PhD thesis]. Princeton
University; 2014.

[88] Yamamoto Y, Tsuji Y. Numerical evidence of logarithmic regions in channel flow at Reτ =
8000. Phys Rev Fluids. 2018;3(1):012602/1–012602/10.

[89] Lundgren TS. Asymptotic analysis of the constant pressure turbulent boundary layer. Phys
Fluids. 2007;19(5):055105/1–055105/17.

[90] Krug D, Philip J, Marusic I. Revisiting the law of the wake in wall turbulence. J Fluid Mech.
2017;811:421–435.

[91] ChiuC-L. Entropy andprobability concepts in hydraulics. JHydraul Eng. 1987;113(5):583–599.
[92] Chiu C-L. Entropy and 2-D velocity distribution in open channels. J Hydraul Eng.

1988;114(7):738–756.
[93] Dingman SL. Probability distribution of velocity in natural channel cross sections. Water

Resour Res. 1989;25(3):509–518.
[94] Fontana N,Marini G, De Paola F, Experimental assessment of a 2-D entropy-based model for

velocity distribution in open channel flow. Entropy. 2013;15(3):988–998.
[95] Moramarco T, Dingman SL. On the theoretical velocity distribution and flow resistance in

natural channels. J Hydrol. 2017;555:777–785.
[96] Heinz S. Mathematical modeling. 1st ed. Heidelberg, Dordrecht, London, New York:

Springer-Verlag; 2011.
[97] Buschmann MH, Indinger T, Gad el Hak M, Near-wall behavior of turbulent wall-bounded

flows. Int J Heat Fluid Flow. 2009;30(5):993–1006.
[98] InoueM, Pullin DI. Large-eddy simulation of the zero-pressure-gradient turbulent boundary

layer up to Reθ = O(1012). J Fluid Mech. 2011;686:507–533.
[99] FernholzHH, Finley PJ. The incompressible zero-pressure gradient turbulent boundary layer:

an assessment of the data. Prog Aerosp Sci. 1996;32(4):245–311.
[100] Monty JP, Hutchins N, NgHCH, et al. A comparison of turbulent pipe, channel and boundary

layer flows. J Fluid Mech. 2009;632:431–442.
[101] Ng HCH, Monty JP, Hutchins N, et al. Comparison of turbulent channel and pipe flows with

varying Reynolds number. Exp Fluids. 2011;51:1261–1281.
[102] Hoyas S, Jiménez J. Scaling of velocity fluctuations in turbulent channels up to Reτ = 2003.

Phys Fluids. 2006;18(1):011702.
[103] Thais L, Mompean G, Gatski T. Spectral analysis of turbulent viscoelastic and Newtonian

channel flow. J Non-Newtonian Fluid Mech. 2013;200(10):165–176.
[104] Zagarola MV, Smits AJ. Scaling of the mean velocity profile for turbulent pipe flow. Phys Rev

Lett. 1997;78(2):239–242.



948 S. HEINZ

Appendices

Appendix A. Model Development

Themean velocitymodel development is presented here in four steps. A velocitymodel for the inner
layer is presented in Appendix A.1, the friction law is presented in Appendix A.2, wake layer effects
are added in Appendix A.3. The outer boundary conditions are considered in the Supplementary
Material.

A.1 Model Development I: Inner Layer

Let us consider first the idea of deriving a universal scaling in y+ for the mean streamwise velocity.
Figures A.1a, b show the mean streamwise velocity U+ and Reynolds shear stress 〈u′v′〉+ (u′ and
v′ refer to streamwise and wall-normal velocity fluctuations and the brackets indicate a Reynolds
average) obtained from the channel flow DNS data of Lee &Moser [64, 65] for the highest Reynolds
number case Reτ = 5186. The variations ofU+ and 〈u′v′〉+ are related to each other by themomen-
tum equation S+ − 〈u′v′〉+ = 1 − y+/Reτ , which is satisfied by all Lee & Moser channel flow DNS
data [64, 65] considered here with an inaccuracy of less than 0.23% (see reference [44]). These
curves indicate two basic mechanisms: a U+ variation implied by the damping of vertical veloc-
ity fluctuations in the viscous sublayer followed by a variation U+ ∝ ln y+. The most promising
approach to describe the variation of U+ in the inner layer is to take advantage of the simple
variations ln(−〈u′v′〉+)∝ ln y+ and U+ ∝ ln y+ in conjunction with S+ − 〈u′v′〉+ = 1 − y+/Reτ .
This approach will be applied in the following of this Appendix A.1 by reducing S+ − 〈u′v′〉+ =
1 − y+/Reτ to S+ − 〈u′v′〉+ = 1. This corresponds to a sequential development of the velocity
model: wake effects that scale in y will be added below (see Appendix A.3) to contributions in inner
scaling y+ considered here. The validity of this approach is supported by means of Fig. A.1a: it may
be seen that S+ − 〈u′v′〉+ = 1 represents a very accurate approximation except in the wake region.
With respect to deriving inner-scaled velocity components in this Sect. A.1, we will focus in the
following on the analysis of the highly accurate (see Appendix A) channel flow DNS data of Lee &
Moser [64, 65] for the highest Reynolds number case Reτ = 5186.

The Reynolds shear stress 〈u′v′〉+ is shown in Fig. A.1b in a double-logarithmic scale. It may be
seen that the first stage (small y+ values) can be very well described by a power law (a line in the
double-logarithmic plot). After this stage, the DNS data show that−〈u′v′〉+ approaches a value very
close to one, but not equal to one. This little deviation from onewill be accounted for in the following
by the consideration of additional contributions to U+, see below. Thus, we consider

〈u′v′〉+1 = −
[

(y+/a)b/c

1 + (y+/a)b/c

]c

. (A.1)

Here, the subscript one is used to refer to the fact that Eq. (A.1) represents only one contribution
to the total Reynolds shear stress and mean streamwise velocity. An analysis of the ln(−〈u′v′〉+)∝
ln y+ stage determines a= 9 and b= 3.04, and c= 1.4 follows from matching Eq. (A.1) to the DNS
data in one point. Figure A.1b demonstrates the suitability of both (y+/9)3.04 in the first stage and
Eq. (A.1) for the stage involving the leveling off of −〈u′v′〉+. It is of interest to observe that the
scaling (y+/9)3.04 found here is very close to the classical near wall limit −〈u′v′〉+ ∝ y+3. The rela-
tion between (y+/9)3.04 and −〈u′v′〉+ ∝ y+3 is addressed in terms of the inset of Fig. A.1b, which
shows DNS data of −〈u′v′〉+/[y+/9]3. This figure provides support for the existence of the classi-
cal near wall behavior −〈u′v′〉+ ∝ y+3 as an asymptotic limit for y+ → 0 (for y+ ≤ 0.1), although
it does not provide strict evidence (see also the corresponding discussion in [97]). It is of inter-
est that this asymptotic limit is outside the range of available Reτ = 5186 DNS data. On the other
hand, (y+/9)3.04 was derived here as a consequence of DNS data (for about y+ ≤ 2). Thus, cur-
rently available data do not enable a strict inclusion of the classical near wall behavior, and, given the
high accuracy of the mean velocity model presented here (see Appendix A), a strict asymptotic limit
inclusion cannot be expected to improve the model performance. The structure of Eq. (A.1) reflects
the two limiting trends, (y+/9)3.04 and one, and it is the most natural choice. However, in general,
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Figure A.1. Model development I: channel flowDNSdata of Lee &Moser [64, 65] for Reτ = 5186. Figure
(a) shows DNS data for U+ (black line) and S+ − 〈u′v′〉+ (cyan line) compared to U+

1 (pink line) given
by Eq. (A.8). Figure (b) shows DNS data for−〈u′v′〉+ (black line) compared to (y+/9)3.04 (cyan line) and
〈u′v′〉+1 (pink line) given by Eq. (A.1). Inset: DNS data of −〈u′v′〉+/[y+/9]3. Figure (c) shows −〈u′v′〉+
(black line) and −〈u′v′〉+1 (black dashed line) versus −〈u′v′〉+1 according to DNS. Figure (d) shows DNS
data for U+ − U+

1 (black line) compared to U+
2 according to Eq. (A.10) (pink line). The variation of H−1

according to Eq. (A.11) (cyan line) is also shown. Inset: κ(U+ − U+
1 ) (black line) and ln(1 + y+H/yκ )

(black dashed line) versus ln(1 + y+H/yκ ).

there would be several ways to transition from one limit to the other. A way to confirm the suitability
of the structure of Eq. (A.1) is to consider the relationship between −〈u′v′〉+ and −〈u′v′〉+1 shown
in Fig. A.1c in comparison to −〈u′v′〉+1 versus −〈u′v′〉+1 . It may be seen that −〈u′v′〉+1 determines
the initial development of −〈u′v′〉+ extremely well.

By using themomentum equation S+ − 〈u′v′〉+ = 1, see the justification above, Eq. (A.1) implies

S+
1 = 1 −

[
(y+/a)b/c

1 + (y+/a)b/c

]c

, (A.2)

where the subscript one refers to the shear produced by 〈u′v′〉+1 . The integration of the latter expres-
sion then leads to the following expression for the mean velocity produced by S+

1 , which is referred
to as U+

1 ,

U+
1 = ac

b

[
BG

( c
b
,− c

b

)
− BG

(
c + c

b
,− c

b

)]
. (A.3)

Here, the subscriptG in BG() is defined byG = (y+/a)b/c/[1 + (y+/a)b/c]. The function BG() refers
to the incomplete beta function, which is defined by

Bz(A,B) =
∫ z

0
sA−1(1 − s)B−1ds. (A.4)
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Figure A.2. Figure (a) shows U+∞ versus Reτ according to channel flow DNS data of Lee & Moser [64,
65] (black dots), DNS data of Lozano-Durán & Jiménez [73, 74] (cyan dots), and experimental data of
Schultz & Flack [69] (red dots). Figure (b) shows U+∞ according to pipe flow DNS data of Chin et al. [66]
(black dots), DNS data of Ahn et al. [75] (cyan dots), and experimental data of Hultmark et al. [70, 71] (red
dots). Figure (c) showsU+∞ according to TBL DNS data of Sillero et al. [67, 68]) (black dots), Pitot (red dots)
and NSTAP (green dots) experimental data of Vallikivi et al. [72]). The dashed black line at Reτ = 1571
separates data at smaller Reτ which suffer from a lack of recovery of the largest flow scales. The pink lines
in (a), (b), (c) shows Eq. (3) combined with C = (2.076, 2.382, 3.261), respectively. Figure (d) shows Reθ
versus Reτ obtained from Pitot (red dots) and NSTAP (green dots) TBL experimental data [72]). The black
line shows Reθ = 3.2Reτ . The same is shown in the inset for Reδ∗. The black line shows Reδ∗ = 5Re0.98τ .

The function BG() can be calculated by standard routines if the arguments of BG() are positive. To
accomplish this we use the relation

Bz(A,B) = A + B
B

Bz(A,B + 1) − 1
B
zA(1 − z)B. (A.5)

The validity of Eq. (A.5) can be shown in the following way. First, we consider

Bz(A + 1,B) + Bz(A,B + 1) =
∫ z

0
sA−1(1 − s)B−1(s + 1 − s)ds = Bz(A,B), (A.6)

where the definition Eq. (A.4) of the incomplete beta function is applied. Second, we consider∫ z

0

dsA(1 − s)B

ds
ds = zA(1 − z)B = ABz(A,B + 1) − BBz(A + 1,B). (A.7)

By using Eq. (A.6) to replace Bz(A + 1,B) in Eq. (A.7) and solving for Bz(A,B), we obtain Eq. (A.5).
By using the latter relation we can write U+

1 as

U+
1 = a

[
cBG

(
c + c

b
, 1 − c

b

)
+ G

c
b (1 − G)−

c
b − Gc+ c

b (1 − G)−
c
b

]
. (A.8)
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Figure A.3. Figures (a)-(c) showw according to channel flowDNS data of Lee &Moser [64, 65], pipe flow
DNS data of Chin et al. [66], and Pitot TBL experimental data of Vallikivi et al. [72]), respectively, for the
given Reτ . The purple lines in (a) and (b) show Eq. (A.18). The purple line in (c) shows Eq. (A.19). Figure (d)
showsw for the TBL for Reτ = 65129 obtained from Pitot (red line) and for Reτ = 72526 obtained from
NSTAP (green line) experimental data [72]).

Figure A.4. Equations (A.18), (A.19) support: Figure (a) shows (w/[0.6y2 + 1.1y + 1])1/2 obtained from
channel flow DNS data [64, 65] for Reτ = 5186 (black line). The pink line shows 1−y. Figure (b) shows
−ln w/y obtained from Pitot experimental data [72] for Reτ = 65129 (black line). The pink line shows
y(0.9 + y + 1.09y2).

The U+
1 curve is shown in Fig. A.1a in comparison to U+. The asymptotic limit U+

1∞ of U+
1 for

y+ → ∞ can be obtained from Eq. (A.3) as

U+
1∞ = ac

b

[
B1

( c
b
,− c

b

)
− B1

(
c + c

b
,− c

b

)]
, (A.9)

where B1() refers to the beta function. By using the definition of the beta function we see that the
first term in the bracket is equal to zero. The second bracket term can be rewritten using the iden-
tity BB1(A,B) = (A + B)B1(A,B + 1). The result readsU+

1∞ = acB1
(
c + c

b , 1 − c
b
) = 15.85. In the
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following,U+
1 will be referred to as wall damping contribution, which contributes toU+ in addition

to the logarithmic and wake contributions discussed below.
The differenceU+ − U+

1 , which is referred to asU
+
2 as long as wake effects (which will be added

in Appendix A.3) are neglected, is shown in Fig. A.1d. We see that

U+
2 = 1

κ
ln

(
1 + y+

yκ

H
)

(A.10)

combined with

H =
[

(y+/h1)h2

1 + (y+/h1)h2

]h3

(A.11)

represents a very good model for U+ − U+
1 except in the wake region. The model parameters

applied here are given by κ = 0.4, yκ = 75.8, h1 = 12.36, h2 = 1, and h3 = 6.47. The shear rate
S+
2 = ∂U+

2 /∂y+ implied by Eq. (A.10), which will be involved in discussions in the Supplementary
Material, is given via the relation

κy+S+
2 = 1 + h3/[1 + y+/h1]

1 + yκ/(y+H)
. (A.12)

The structure of Eq. (A.10) was found as follows. The function H is a transition function that
varies between zero and one for very small and large y+, respectively, see Fig. A.1d. Thus, Eq. (A.10)
varies between zero (forH= 0) andU+

2 = ln(y+/yκ )/κ . The latter asymptotic logarithmic variation
of U+

2 is supported by Fig. A.1d. However, the use of Eq. (A.10) in conjunction with H= 1 would
lead to an inaccurate transition of U+

2 from zero to its asymptotic logarithmic behavior, which pro-
vides motivation for the involvement ofH: depending on threemodel parameters, the consideration
of H enables the accurate reflection of changes of U+

2 between zero and its asymptotic behavior.
The structure of H follows the structure of 〈u′v′〉+1 . Evidence for the suitability of the structure of
H is provided in terms of the inset in Fig. A.1d. Equation (A.10) claims that the structure of H
enables ln(1 + y+H/yκ ) to represent the initial development of κ(U+ − U+

1 ). In correspondence to
Fig. A.1c, the inset in Fig. A.1d provides evidence for this claim.

The model parameters involved in Eq. (A.10) were determined in two steps. First, κ and yκ were
obtained by an analysis of the asymptotic logarithmic stage of U+

2 . In particular, κ and yκ were
obtained by considering theU+ − U+

1 DNS data points at about y+ = 500 and y+ = 600. The latter
two values cover the core of the κ plateau region, see Fig. 3a. Second, the model parameters h1, h2,
and h3 were fixed by the requirement that the model Eq. (A.10) agrees exactly with the U+ − U+

1
DNS data at three points. This parameter calculation can be performed by finding h3 analytically
and varying h1 and h2 until the model values at two points agree with the known DNS data values.

In particular, with respect to κ = 0.4 obtained here for the vonKármán constant it is worth noting
that this finding is obtained as an exact consequence of DNS data in the range 500 ≤ y+ ≤ 600 by
excluding the wall damping contribution U+

1 . This approach is different to the approach discussed
in Sect. 2.2 to determine κ .

A.2 Model Development II: Friction Law

To prepare the modeling of the velocity wake contribution in Appendix A.3, let us consider the
validity of the friction law U+∞ = κ−1 (ln Reτ + C) for the three flows considered and derive its
parameters from the observations applied here.

Figures A.2a-c support U+∞ = κ−1 (ln Reτ + C) combined with κ = 0.4 and a constant C =
(2.076, 2.382, 3.261) for channel, pipe, and TBL flow, respectively. Justification for these parame-
ter settings was obtained in the following way. For channel flow, the DNS data of Lee & Moser [64,
65] and experimental data of Schultz & Flack [69] provide κ = 0.4003 and κ = 0.3984 least-squares
estimates for κ , respectively. C= 2.076 provides then the best fit to DNS data. For the TBL, the DNS
data [67, 68]) cover an insufficient range of Reτ variations. The Pitot and NSTAP experimental data
of Vallikivi et al. [72]) provide κ = 0.3947 and κ = 0.3946 least-squares estimates for κ , respectively.
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C= 3.261 provides then the best fit to Pitot experimental data. For pipe flow, the DNS data of Chin
et al. [66] and experimental data of Hultmark et al. [70, 71] provide κ = 0.3968 and κ = 0.4134
least-squares estimates for κ , respectively. So only in this case, there is a minor difference of κ values
derived fromDNS and experiments. The DNS value κ = 0.4 was applied in this case in conjunction
with the conclusion of [27] that κ = 0.40 represents the most reliable κ value based on experimental
pipe flow results. C= 2.382 provides then the best fit to DNS data.

For channel and pipe flow, the comparison with the corresponding model curves does not
indicate any systematic deviation from U+∞ ∝ ln Reτ . It is surprising to observe relatively large,
apparently random deviations of some DNS fromU+∞ ∝ ln Reτ . With respect to channel (pipe) flow
we observe that the DNS data of Lee & Moser [64, 65] (DNS data of Chin et al. [66]) are more con-
sistently in agreement with U+∞ ∝ ln Reτ than the DNS data of Lozano-Durán & Jiménez [73, 74]
(DNS data of Ahn et al. [75]).

With respect to the TBL there is a very good agreement between the DNS data of Sillero et al. [67,
68] and experimental data for Reτ ≥ 1500, whereas there are significant and systematic deviations
between the DNS data of Sillero et al. [67, 68] and experiments for lower Reτ . The reason for the
latter deviations, which are also seen by using the DNS data of Schlatter & Örlü [76, 77], is a lack of
recovery of the largest flow scales after an artificial inflow [67]: see also the discussion in Inoue &
Pullin [98]. In particular, Sillero et al. [67] concluded that Reθ ≥ 4800 is needed for the recovery
of the largest flow scales after an artificial inflow. Figure A.2d shows the Reθ − Reτ relationship
based on the experimental Pitot and NSTAP data. It may be seen that Reθ = 3.2Reτ represents a
very good approximation to the experimental data. Hence, Reθ = 4800 is equivalent to Reτ = 1500,
which means that the requirement Reτ ≥ 1500 seen here corresponds to the requirement Reθ ≥
4800 reported by Sillero et al. [67]. For completeness, the inset in Fig. A.2d shows the same for Reδ∗
(which is often used for TBL analyses [31–36]) compared to the excellent approximation Reδ∗ =
5Re0.98τ . Both Pitot and NSTAP experimental TBL data [72] agree extremely well with the model. It
has to be noted that the experimental data applied here made use of a skin friction relationship [99],
which was found to be in very good agreement with other observations [72].

Overall and in agreement with previous conclusions [100, 101], the applicability of the same
Reynolds number scaling with the same slope expressed by U+∞ = κ−1 (ln Reτ + C) reveals a
remarkable similarity of the structure of the three flows considered. It is worth noting that [36]
recently came to a slightly different conclusion. He applied κ = 0.384 regarding the logarithmic
velocity variation in inner scaling for the three flows considered.With respect to κ based on the fric-
tion law, he applied κ = (0.413, 0.420, 0.392) for channel flow, pipe flow, and the TBL, respectively.
Here, the TBL κ value results from taking advantage of Reδ∗ = 5Re0.98τ . In contrast to the approach
applied here, the channel flow and pipe flow κ were derived from four DNS data sets [64, 73, 102,
103] and earlier Princeton superpipe experimental data [83, 104]. A discussion of consequences of
these κ value settings can be found in Sect. 3.4. We also note that U+∞ = κ−1 (ln Reτ + C) deter-
mines the skin friction coefficient via cf = 2/U+2∞ and the Reynolds number Re∞ = ReτU+∞ based
on the normalized centerline/freestream velocity U+∞.

A.3 Model Development III: Wake Layer

Figure A.1d shows thatU+ is well represented byU+
1 + U+

2 , but there is a little deviation in the wake
region, i.e., for relatively high y+ values. This deviationU+

3 = U+ − U+
1 − U+

2 , which accounts for
wake effects, will be determined in this Appendix A.3 for the three flows considered. In particular,
we will provide evidence for the suitability ofU+ = U+

1 + κ−1ln
(
[1 + Hy+/yκ ]/[w + W0]

)
. In this

way, the wake contribution U+
3 = −κ−1ln (w + W0) to the mean velocity is provided via w and

W0. The functions w and W0 will be derived below depending on the Reynolds number and flow
considered.

Let us obtain first insight into the structure of U+
3 . Figure A.1d shows that U+

3 is nonzero in the
asymptotic regime (for relatively high y+ values). Thus, to determine U+

3 we can use the relation

(
U+)

as = U+
1∞ + U+

2∞ + U+
3 . (A.13)
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Here, the subscript as refers to the asymptotic limit of U+. We know U+
1∞ = 15.85 according to

Eq. (A.8) and U+
2∞ = κ−1ln(y+/yκ ) according to Eq. (A.10). In particular,

(
U+)

as differs from
U+ = U+

1 + U+
2 + U+

3 by the consideration of asymptotic limits of U+
1 and U+

2 in Eq. (A.13).
Figure A.1d shows that the asymptotic

(
U+)

as can be considered as a slightly modified version of
U+
1∞ + U+

2∞. Correspondingly, we consider the following modified version of Eq. (A.13),

(
U+)

as = U+
1∞ + κ−1ln

(
y+

yκW

)
, (A.14)

which is equivalent to introducing U+
3 as U+

3 = −κ−1ln W. By making use of U+
3 = −κ−1ln W,

the complete velocity U+ = U+
1 + U+

2 + U+
3 is given by

U+ = U+
1 + κ−1ln

(
1 + y+H/yκ

W

)
. (A.15)

Here, the wake functionW, which refers to the wake effect, is given according to Eq. (A.14) by

W = e−κ[(U+)as−U+
1∞] y

+

yκ

. (A.16)

Next, let us specify the structure of W. The advantage of the approach applied is its ability to
reflect the most important feature of the mean velocity in the asymptotic stage, the leveling off of the
mean velocity, in the simplest possible way. To show this we consider Eq. (A.16) in the asymptotic
y+ regime,

W0 = e−κ(U+∞−U+
1∞) y

+

yκ

. (A.17)

Here, W0 is the asymptotic wake function, and U+∞ is the constant centerline/freestream velocity.
The constant U+∞ can be parametrized by the friction law Eq. (3), U+∞ = κ−1(ln Reτ + C), which is
implied by the log-law [2, 27, 80]. It is worth noting that this equation does not involve any assump-
tion as long as C is not defined. To account for deviations from W0, the wake function W will be
considered to consist of two contributions, W = W0 + w, where w, which is given by the differ-
ence of Eqs. (A.16) and (A.17), refers to deviations fromW0. The remaining tasks are (i) to provide
evidence for the suitability of Eq. (3) by showing that U+∞ ∝ ln Reτ and C is a constant, and (ii) to
determine the deviation w from the asymptotic wake behavior. The first problem was already solved
in Appendix A.2. The second problem will be solved in the next two paragraphs.

Figures A.3a-c show w for channel, pipe, and TBL flow obtained by using the DNS data of Lee
& Moser [64, 65], DNS data of Chin et al. [66], and Pitot experimental data of Vallikivi et al. [72],
respectively.With respect to this calculation ofw, the individualU+∞ data given by the corresponding
DNS and experimental data were applied. The DNS data of Lee & Moser [64, 65] and DNS data
of Chin et al. [66] were applied because of their better agreement with U+∞ ∝ ln Reτ . Given the
significant deviations of lower Reτ DNS data of Sillero et al. [67, 68]) from U+∞ ∝ ln Reτ and the
excellent agreement of experimental data with U+∞ ∝ ln Reτ , the experimental data were applied to
calculatew for the TBL. In particular, the Pitot experimental DNS datawere used. The reason for that
is explained in terms of Fig. A.3d, which shows Pitot and NSTAP calculations of w for Reτ = 65129
and Reτ = 72526, respectively. For small y, w needs to approach one such thatW = W0 + w affects
the mean streamwise velocity only in the asymptotic y+ regime, see Eq. (A.15) and the discussion in
the beginning of this Appendix A.3. Although the NSTAP experimental data are in agreement with
W(0) = w(0) = 1, the Pitot experimental data show a smoother transition toW(0) = w(0) = 1 in
the region of small y values.

The most significant result of calculating w from DNS and experimental data is that there is no
significant Reτ effect on w. With respect to both channel and pipe flow, it was found that w = wCP,
where

wCP = 0.1(1 − y)2
[
6y2 + 11y + 10

]
, (A.18)

represents an excellent model for these DNS estimates (the subscript CP refers to channel and pipe
flow): see Figs. A.3a-b. In agreement with the features seen in Figs. A.2a-b, it appears that the channel
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flowDNS data collapse slightly better than the corresponding pipe flow results. Eq. (A.18) was found
by using a fourth-order polynomial in conjunction with the constraint to pass exactly through 5 data
points given by the Reτ = 5186 channel flow curve. With respect to the TBL, we see that w = wBL,
where

wBL = e−y(0.9+y+1.09y2), (A.19)
represents the experimental data very well (the subscript BL refers to boundary layer flow): see
Fig. A.3c. Given the possibility to use the same w for both channel and pipe flow, it is interesting
to see that w for the TBL is described by an exponential function and not a polynomial. The rea-
son for the need to use different w structures is given by the bounded channel and pipe flow, and
the unbounded TBL (see also the discussion in Sect. 3.3). The latter is reflected by w= 0 at y= 1
for channel and pipe flow, and the lack of w= 0 for finite y for the TBL. The suitability of structures
applied tomodelwCP andwBL is confirmed in terms of Fig. A.4, which showswCP andwBL by follow-
ing in part the structure of Eqs. (A.18)-(A.19). The comparison with the corresponding linearities
involved in Eqs. (A.18)-(A.19) clearly demonstrates the suitability of polynomials and exponential
functions applied. In particular, Fig. A.4b was used to find the model Eq. (A.19).

The shear rate S+
3 = ∂U+

3 /∂y+ related to U+
3 matters regarding the discussions in the Supple-

mentary Material. By using the expressions derived above we obtain

κy+S+
3 = −1 + w′y/W0

1 + w/W0
= − 1 + w′/K

1 + w/(Ky)
. (A.20)

Here, w′ refers to the derivative of w(y), which is given by

w′
CP =

(
12y + 11

6y2 + 11y + 10
− 2

1 − y

)
wCP, w′

BL = −(0.9 + 2y + 3.27y2)wBL. (A.21)

The last expression in Eq. (A.20) involvesK = y−1
κ eκU

+
1∞−C, which is a flow-dependent constant. By

using Eqs. (A.20) and (A.21), κy+S+
3 for channel/pipe flow and the TBL can be written(

κy+S+
3
)
CP = (1 − y)GCP − 1,

(
κy+S+

3
)
BL = GBL − 1, (A.22)

where

GCP = 1 + y + y2(1.6 + 1.8y)
Ky + (1 − y)2(0.6y2 + 1.1y + 1)

, GBL = 1 + (0.9 + 2y + 3.27y2)y
1 + Kyey(0.9+y+1.09y2)

. (A.23)

GCP is a function that varies between 1 and 5.4/K, and GBL varies between 1 and 0.

Appendix B. Model Validation

The velocity model derived in Appendix A is validated here by DNS and experimental data.

B.1 Comparisonwith DNS and Experiments: Moderate Reτ

Comparisons of the PVMwith DNS and experimental data are shown in Figs. B.1, B.2, B.3. First, let
us consider these comparisons for 500 ≤ Reτ ≤ 2000. With respect to the TBL, only DNS data are
involved which do not suffer from an insufficient development of large scales, see the discussion in
Appendix A.2. The TBL model curves are plotted up to y = e3. Model errors eM and data errors eD
in percent (the maximum of the values at all available data points) are presented in Table B1. The
model errors eM result from the relative model errors. For DNS, the relative error of the DNS U+∞
compared to Eq. (3) is used as a measure to indicate the DNS data error eD. For experimental data,
we use the relative error eD of experimental data at about y+ = 5 with respect to the corresponding
U+
1 value: it was shown above that U+

1 , which is strongly supported by DNS data, is valid up to at
least y+ = 10, see Fig. A.1a. These definitions of data errors may be considered to indicate global
errors. With respect to DNS, the error related to the momentum balance increases with the distance
from the wall (see reference [44]). With respect to experiments, the error due to the imprecision in



956 S. HEINZ

Figure B.1. Channel flow: The PVM (pink lines) is compared in (a) to DNS data of Lee & Moser [64, 65]
and (b) experimental data of Schultz & Flack [69] (black dots) for the given Reτ (separated by�U+ = 5).

Figure B.2. Pipe flow: The PVM (pink lines) is compared in (a) to DNS data of Chin et al. [66] and (b)
experimental data of Hultmark et al. [70, 71] (black dots) for the given Reτ (separated by�U+ = 5).

Figure B.3. TBL: The PVM (pink lines) is compared in (a) to DNS data of Sillero et al. [67, 68] and (b) Pitot
experimental data of Vallikivi et al. [72]) (black dots) for the given Reτ (separated by�U+ = 5).

the measurement of the wall distance decreases with the wall distance (see also the discussion at the
end of Appendix A.1 related to Fig. B.4).

Overall, the comparison of the PVM with DNS and experiments reveals an impressive model
performance. Compared to DNS, the model errors eM are below 1.7% for all three flows considered.
We see that eM compares very well with eD (the TBL eD arises from only two data points Reτ =
(1571, 1989); due to the scatter of data it may be expected that this eD is slightly underpredicted). It
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Table B1. Model errors eM and data errors eD in percent. E-PP and E-LL refer to experiments providing
partial profile (PP) and log-law (LL) support, respectively.

Channel Pipe TBL

DNS & Experiments eM eD eM eD eM eD

a) 500 ≤ Reτ ≤ 2000: DNS 0.9 0.9 1.7 1.4 1.3 0.4
E-PP 4.4 2.4 18 18 — —

b) 2000 < Reτ ≤ 105: DNS (Reτ = 5200) 0.3 0.0 — — — —
E-PP (Reτ ≤ 4×104) — — 9.0 9.0 — —
E-LL (all Reτ range) 1.5 — 3.5 — 2.8 —

Figure B.4. Experimental data for the given Reτ : (a) channel flow data of Schultz & Flack [69] and pipe
flow data of Hultmark et al. [70, 71]; (b) TBL data of Vallikivi et al. [72]. The pipe flow data in (a) aremoved
up by+5.

is worth noting that it is impossible for eM to be smaller than eD. This comparison seems to indicate
that the main reason for the eM model error is given by the scatter of DNS data.

The comparison of the velocity model with experimental results shows a larger model error than
seen in comparison to DNS. However, it is relevant to note that this model error is, basically, implied
by the corresponding scatter of data (again, eM cannot be smaller than eD). Figure B8 supports this
view by showing only experimental data for the lowest four Reynolds numbers. It may be seen, for
example, that the experimental velocity profiles in the viscous region clearly show that the experi-
mental data are affected by noise. With respect to pipe flow, we find eM = eD. For channel flow we
find that eM is slightly larger than eD, but this finding seems to be affected by the fact that the chan-
nel eD was obtained from only two data points, Reτ = (1010, 1956). It is worth noting that support
for the velocity model via experiments is not only provided for the log-law region, but the complete
velocity profile is at least partially included.

B.2 Comparisonwith DNS and Experiments: High Reτ

The comparisons presented in Appendix A.1 do not give clear answers to two questions: (i) how can
we quantify the model error without considering cases of (significant) data errors (in conjunction
with the fact that eM cannot be smaller than eD), and (ii) which support has the velocity model for
higher Reynolds numbers. These questions can be addressed by considering comparisons with DNS
and experiments for 2000 < Reτ ≤ 105. The corresponding errors are shown in Table B1.

DNS data with an almost zero eD are available for Reτ = 5200. Remarkably, the corresponding
model error eM is only 0.3%. The calculation of eD as described above is only one possibility to define
a data error. Another way would be to look at the relative error of satisfying themomentum equation
S+ − 〈u′v′〉+ = 1 − y. This data error is 0.23% for the case considered, which is comparable to eM =
0.3%. Therefore, we can conclude that the PVM is extremely accurate and only limited by the error
of DNS (as it has to be expected according to the model development).
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The comparison with corresponding experimental data provides strong support for the appli-
cation of the model at higher Reynolds numbers. With respect to this question, it is helpful to
differentiate between experimental results that provide support for more than the log-law region
(E-PP, partial profile support), and experimental results that provide only support in the log-law
region (E-LL, log-law support). The comparison of the model with E-LL leads to the conclusion
that the model performance is excellent. The corresponding models errors eM are below 3.5% for all
three flows considered, see Table B1. The largest value eM = 3.5% was obtained for pipe flow based
on only two data points Reτ = (68371, 98190). The comparison of the model with E-LL is only pos-
sible with respect to pipe flow: we have eM = eD = 9.0%. However, this relatively large model error
is simply a consequence of the data error: the model error cannot be smaller than the data error.
The more important fact of both model comparisons with E-LL and E-PP is that these comparisons
clearly demonstrate the applicability of the PVM for high Reynolds number flows.
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