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Details to the discussions in Sect. 3 are provided here: mean bulk flow properties
(bulk velocity, skin-friction coefficient, and bulk Reynolds number) are considered in
Suppl. S.1, and related turbulence properties (turbulence production and turbulent vis-
cosity) are considered in Suppl. S.2. The particular goal is the derivation of asymptotic
profiles of these variables and their comparison with corresponding models directly im-
plied by the PVM.

S.1. Bulk Velocity, Skin-Friction Coefficient, and Bulk Reynolds Number

For all the three flows considered, the bulk velocity is defined by U+
b =

´ 1
0 U+dy. Using

integration by parts, this relation can be identically written as

U+
b = U+(1) − κ−1

ˆ 1

0
κy+S+dy = U+(1) − κ−1(I12 + I3). (S.1)

Here, U+(1) refers to U+ at y = 1, which is equivalent to U+
∞ for channel and pipe flow,

and 0.99U+
∞ for the TBL. The last expression introduces

´ 1
0 κy+S+dy = I12 + I3, where

I12 =
ˆ 1

0
κy+(S+ − S+

3 )dy, I3 =
ˆ 1

0
κy+S+

3 dy. (S.2)

The integral I3 is a constant. Using numerical integration we find I3 =
(−0.0258, 0.1248, 0.5217) for channel flow, pipe flow, and the TBL, respectively. The
other integral I12 is a function of Reτ .

For channel and pipe flow, I12 is affected by the outer boundary terms SCP
1 and

SCP
2 . The effect of SCP

1 and SCP
2 on I12 given by Eq. (S.2) can be assessed in the

following way. By using |SCP
1 | ≤ yS+

1 (1), see reference [25] (Supplementary Mate-
rial, second paragraph), we find

´ 1
0 κy+SCP

1 dy = −γ1κReτ S+
1 (1)/3, where γ1 is a

proportionality coefficient. The numerical calculation of γ1 proves that γ1 = 1 rep-
resents a highly accurate approximation for Reτ ≥ 200. Correspondingly, by using
|SCP

2 | ≤ (1 − [κReτ S+
2 (1)]−1)S+

2 (1), see reference [25] (Supplementary Material, last
paragraph), we find

´ 1
0 κy+SCP

2 dy = −γ2κReτ S+
2 (1)(1 − [κReτ S+

2 (1)]−1)/2, where γ2 is
a proportionality coefficient. The numerical calculation of γ2 shows that γ2 is a function
that varies between 0.94 and 1 for Reτ ≥ 500. A very accurate approximation for γ2 for
the range Reτ ≥ 200 is given by γ2 = (1+exp(−0.135[lnReτ ]2 +0.211lnReτ +1.229))−1.
Based on these expressions it is possible to prove that the effect of SCP

1 and SCP
2 on

the calculation of U+
b is less than 0.09% for Reτ ≥ 500.

Thus, the effect of SCP
1 and SCP

2 on I12 will be neglected in order to not unnecessarily
complicate the calculation. In this case, I12 can be analytically obtained by following
the developments made in reference [25] (Supplementary Material). We obtain

I12 = κa2

2Reτ

[
cBG∗

(
c + 2c

b
, 1 − 2c

b

)
+ G

2c
b∗ (1 − G∗)− 2c

b − G
c+ 2c

b∗ (1 − G∗)− 2c
b

]
+ J(p∗).

(S.3)
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The first and second contributions arise from the integration of κy+S+
1 and κy+S+

2 ,
respectively. Here, G∗ and p∗ are obtained by setting y+ = Reτ in G = (y+/a)b/c/[1 +
(y+/a)b/c] and in p = y+/h1/[1 + y+/h1] (see reference [25]), this means we have
G∗ = (Reτ /a)b/c/[1 + (Reτ /a)b/c] and p∗ = Reτ /h1/[1 + Reτ /h1]. The model that
results from the combination of Eqs. (S.1) and (S.3) provides an analytical model for
the bulk velocity (PVM-Ub). A corresponding analytical model for the skin-friction
coefficient based on the bulk velocity (PVM-Cf) is given by Cf = 2/U+2

b , and an ana-
lytical model for the Reynolds number based on the bulk velocity (PVM-Re) is given
by Re = 2Reτ U+

b .
Figure S.1a shows the I12 variation according to Eq. (S.3). For Reτ ≥ 500, we see

that I12 deviates by less than 5% from the asymptotic value one. Asymptotically, we
find for channel flow

U+
b∞ = U+

∞ − κ−1(1 + I3) = κ−1 (ln Reτ + C − 1 − I3) = κ−1ln(3Reτ ), (S.4)

which recovers U+
b = κ−1 (ln Reτ − 1) + B. Correspondingly, we find for pipe flow

U+
b∞ = κ−1ln(3.52Reτ ), (S.5)

and for the TBL
U+

b∞ = κ−1ln(5.69Reτ ). (S.6)

For channel flow, we find that the relative error of U+
b∞ compared to U+

b is (0.64, 0.41,
0.06, 0.007)% for Reτ = (500, 103, 104, 105), respectively, see also Fig. 8 in Sect. 4.2.

Next, let us discuss implications for the skin-friction coefficient and bulk Reynolds
number. In the following we will focus on channel flow to restrict the following discussion.
The skin-friction coefficient based on the bulk velocity is Cf = 2/U+2

b , and Re =
2Reτ U+

b refers to the bulk Reynolds number, which is based on the bulk velocity. Figure
S.1b shows Cf versus Re for Reτ ≥ 500 obtained by the PVM-Cf and from experiments
[31]. Also shown are the skin friction model Cf = 0.073/Re1/4 of Dean [54] and the
model Cf = 0.0743/Re1/4 of Zanoun et al. [55]. Overall, it may be seen that there is
an excellent agreement between the PVM-Cf and the experiments. A discussion of the
95% confidence intervals of measured data can be found elsewhere [31]. It turns out that
measured data for relatively small Reynolds numbers are more affected by uncertainty
than measured data for relatively high Reynolds numbers. For relatively high Reynolds
numbers, the PVM-Cf performs better than the models of Dean [54] and Zanoun et al.
[55]. There is only a very minor difference between the latter models.

Figure S.2a addresses the asymptotic variation of the skin-friction coefficient: the
curve seen in Fig. S.1b is compared with the curve based on Eq. (S.4), this means

Cf∞ = 2κ2

[ln(3Reτ )]2
. (S.7)

There is only a very minor difference between the two curves for relatively low Reynolds
numbers: the relative Cf∞ error (which is twice the U+

b∞ error) is below 1.3%, which
is the maximum error at Reτ = 500. Hence, the asymptotic Cf variation is governed
by Eq. (S.7). The most relevant conclusion of the comparison with the models of Dean
[54] and Zanoun et al. [55] is that the asymptotic Cf variation is not well described
by a power function: according to Eq. (S.7) it follows an inverse quadratic logarithmic
function. An interesting discussion of Cf variations based on different approaches for
several flows can be found elsewhere [56]. In contrast to the findings presented here,
Pirozzoli’s [56] discussion reveals the problem to explain the consistency of assumed
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asymptotic and non-asymptotic (Reτ dependent) Cf variations based on several models
and model parameters, i.e. the manifestation of asymptotic Cf profiles.

Figure S.2b addresses the asymptotic Re − Reτ relationship. Like in Fig. S.2a, we
compare the curve obtained from the PVM-Re with the curve that uses Eq. (S.4), i.e.,

Re∞ = 2κ−1Reτ ln(3Reτ ). (S.8)

For the Reτ range considered there is basically no difference between these functions
(the relative Re∞ error is equal to the U+

b∞ error). Figure S.2b shows that Re∞ and
Reτ are basically related by a power law. This view can be made more explicit by
approximating ln(3Reτ ) by the power function aReb

τ , where a and b are determined by
the condition that the function value and derivative of aReb

τ at a certain reference point
Reτ0 are equal to the corresponding ln(3Reτ ) values. This results in

Re∞ = 2aκ−1Re1+b
τ , (S.9)

where b = 1/ln(3Reτ0) and a = Re1−b
τ0 /b. For example, for Reτ0 = 510 we obtain

Reτ = 0.09Re0.88
∞ , which is the Re∞ −Reτ relationship quoted by Pope [45]. For a given

Re∞, Eq. (S.8) can be used to find Reτ by iteratively solving Reτ = κRe∞/[2ln(3Reτ )]
starting with Reτ = 0.09Re0.88

∞ on the right-hand side. A converged solution is obtained
in less than four iterations.

S.2. Turbulence Production and Turbulent Viscosity

Let us continue with the discussion of the asymptotic flow structure by considering
turbulence characteristics. We consider two relevant combinations of the Reynolds shear
stress ⟨u′v′⟩+ and shear rate S+: the production P + = −⟨u′v′⟩+S+ of turbulent kinetic
energy and the turbulent viscosity ν+

t = −⟨u′v′⟩+/S+.
To prepare the discussion of the production P + = −⟨u′v′⟩+S+, let us consider some

consequences of the analytical production model PVM-P derived here. As it is well
known and shown below, relevant variations of P + take place very close to the wall. This
supports the idea to identify a universal production limit which is only a function of y+,
i.e., unaffected by Reτ . For all three flows considered, this universal production limit is
given by P +

∞ = −⟨u′v′⟩+S+ = −(S+ − M)S+, where M = 1 (because MCP = MBL = 1
close to the wall, see MCP = 1 − y, MBL = e−y6−1.57y2) and S+ = S+

1 + S+
2 (because

wake effects to not affect this flow region). Hence, P +
∞ is given by

P +
∞ = S+

1 + S+
2 − (S+

1 + S+
2 )2 = 1

4
−

(1
2

− [S+
1 + S+

2 ]
)2

. (S.10)

Hence, the maximum of P +
∞ is attained at S+

1 + S+
2 = 1/2, this means exactly at the

half of the variation 1 ≥ S+
1 + S+

2 ≥ 0. This implies(
P +

∞
)

max = 1/4. (S.11)

The maximum y+ value y+
max is obtained by solving S+

1 + S+
2 = 1/2. It is worth noting

that this condition explains the physical relevance of y+
max as a characteristic shear decay

rate. By using S+
1 + S+

2 = 1/2 in conjunction with the definition of S+
1 (see reference

[25]), y+
max is found to be given by

y+
max = a

[
1/2 + S+

2 (y+
max)

]1/b(
1 −

[
1/2 + S+

2 (y+
max)

]1/c
)c/b

. (S.12)
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It turns out that the S+
2 contribution to S+

1 + S+
2 = 1/2, and, therefore, Eq. (S.12), is

very small. This fact allows to solve Eq. (S.12) iteratively starting with S+
2 = 0. The

result, which is obtained after only 6 iterations, is y+
max = 11.0694. The latter finding

can be also written y+
max = 1.0019y+

0 , where y+
0 = 11.0482 refers to the solution of

Eq. (S.12) combined with S+
2 = 0. Hence, there is only a small difference of 0.19%

between y+
max and y+

0 .
Figures S.3-S.5 show P + = −⟨u′v′⟩+S+ as obtained from the PVM-P (this means not

P +
∞) and the production in premultiplied form κy+P + for the three flows considered. The

set-up of plots follows Fig. 4 for ⟨u′v′⟩+: DNS data shown at the highest available Reτ are
compared to model predictions at the same Reτ and Reτ = (105, 1010) to illustrate the
Reτ effect. It may be seen that P + is extremely well approximated by P +

∞ with respect
to the three flows considered. Thus, all these P + curves are characterized by a maximum
production P + = 0.25 at y+ = 11.07. Hence, P + converges asymptotically to P +

∞, i.e.,
P + becomes asymptotically independent of the outer scaling variable y. Differences
due to the Reτ considered are seen with respect to the production in premultiplied
form κy+P +. The consideration of κy+P + is very helpful to reveal contributions to the
bulk production: with respect to κy+P +, equal areas represent equal contributions to
the total production [2,57,58]. The comparison between DNS data and model curves
at the corresponding Reτ shows an excellent agreement with respect to channel flow,
and a good agreement for pipe flow and the TBL. This observation simply reflects the
accuracy of channel flow versus pipe flow and TBL DNS. Given the excellent reflection
of velocities and shear stresses obtained from DNS and the models presented here, it
is interesting that there are such differences at all. For the three flows considered, the
Reτ effect shows the expected features: P + scales in the log-law region with 1/(κy+),
and the extent of the log-law region increases with Reτ .

In continuation of the production P + = −⟨u′v′⟩+S+ discussion, let us consider next
the turbulent viscosity ν+

t = −⟨u′v′⟩+/S+, which is equal to the ratio of turbulent
to molecular viscosity. To prepare this discussion, let us look at consequences of the
analytical turbulent viscosity model PVM-TV. According to the PVM-TV, an exact
expression for the turbulent viscosity ν+

t = −⟨u′v′⟩+/S+ is given for channel and pipe
flow by

ν+
t = κy+(1 − y)

κy+(S+
1 + SCP

1 + S+
2 + SCP

2 ) − 1 + GCP (1 − y)
− 1. (S.13)

For the TBL, the corresponding exact expression ν+
t = −⟨u′v′⟩+/S+ can be written

ν+
t = κy+MBL

κy+(S+
1 + SCP

1 + S+
2 + SCP

2 ) − 1 + GBL
− 1. (S.14)

These two expressions for ν+
t reveal that ν+

t scales with Reτ for large Reynolds numbers,
where the last terms (negative one) in Eqs. (S.13), (S.14) do not contribute. By using
the definition Reτ = uτ δ/ν, we have ν+

t /Reτ = νt/(νReτ ) = νt/(uτ δ), this means the
dimensional turbulent viscosity scales with the outer scales uτ and δ. This confirms the
validity of using uτ as outer velocity scale, see the discussion by Kim [46].

Let us ask which universal viscosity models for ν+
t /Reτ can be expected. First, we

look at the asymptotic features. The way to accomplish this is to consider the asymp-
totic variations κy+S+

1 = 0 and κy+S+
2 = 1 in Eqs. (S.13), (S.14), and to neglect

correspondingly the last terms (negative one). By using these assumptions we obtain
for channel and pipe flow

ν+as
t = κy+

GCP
, (S.15)
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and for the TBL we obtain
ν+as

t = κy+ MBL

GBL
. (S.16)

Here, the superscript as refers to the fact that we consider asymptotic profiles. Like
GCP and GBL, MBL = e−y6−1.57y2 is only a function of y.

Plots of these viscosity profiles are shown in Fig. S.6. The set-up of plots follows
again Fig. 4 for ⟨u′v′⟩+: DNS data shown at the highest available Reynolds number
are compared to model predictions at the same Reτ . Also shown in these plots are
the universal asymptotic viscosity limits given by Eqs. (S.15), (S.16), and the curve
Re−1

τ ν+
t = κy. It is of interest to see again the influence of inaccuracies on pipe flow and

TBL DNS: see the oscillations of Re−1
τ ν+

t for relatively large y values. It may be seen
that Re−1

τ ν+
t = κy appears to be an excellent model except in the wake region. After the

Re−1
τ ν+

t = κy stage, the turbulent viscosities follow their asymptotic profile depending
on the flow considered. For the Reynolds numbers considered, it is remarkable that the
Reynolds number effect is very small.

In order to see the accuracy of the outer scaling applied to represent the turbulent
viscosity in the near-wall region by ν+as

t , let us consider possible deviations from ν+as
t .

In order to do so we introduce a parameter Cµ that may account for such deviations,

ν+
t∞ = Cµν+as

t . (S.17)

Here, ν+
t∞ refers to the asymptotic limit of ν+

t . Plots of Cµ are shown in inner scaling
for the three flows considered in Fig. S.6d for Reτ = (500, 103, 104) by calculating ν+

t∞
in Eq. (S.17) according to Eqs. (S.13), (S.14). For sufficiently large Reτ , as given for
Reτ = 104, Cµ converges to

C∞
µ = 1

κy+(S+
1 + S+

2 )
− 1

κy+ , (S.18)

which is only a function of y+. The latter expression follows from Eqs. (S.13), (S.14)
by neglecting outer scaling effects. The limit Eq. (S.18) approaches asymptotically one,
as may be seen by using κy+S+

1 = 0 and κy+S+
2 = 1. For the smaller Reτ considered,

there are very minor deviations of Cµ from C∞
µ . Overall, we find that the self-similarity

relation ν+
t∞ = C∞

µ ν+as
t represents an excellent approximation for Reτ ≥ 500 as consid-

ered.
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Figure S.1. Bulk flow properties: Figure (a) shows I12 obtained from Eq. (S.3). Figure (b) shows Cf according
to the PVM-Cf (black line), the model Cf = 0.073/Re1/4 of Dean [54] (cyan line) and the model Cf =
0.0743/Re1/4 of Zanoun et al. [55] (purple line). The black dots show experimental data [31].

5



10
4

Re

10
5

10
6

10
7

1
0

3

C
f

( )a

10
3

10
2

10
4

10
7

Ret

10
5

10
6

R
e

10
9

10
3

10
5

10
7

( )b

Figure S.2. Bulk flow properties: Figure (a) shows Cf according to the PVM-Cf (black line) compared to
Cf∞ according to the asymptotic Eq. (S.7) (red line). Figure (b) shows the Re − Reτ relationship obtained
from the PVM-Re (black line) compared to the asymptotic relationship Eq. (S.8) (red line).
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Figure S.3. Channel flow: P + and κy+P + are shown in (a) and (b), respectively, according to DNS
data of Lee & Moser [26,27] for Reτ = 5186 (black lines) in comparison to PVM-P predictions for
Reτ = (5186, 105, 1010) shown by magenta, cyan, and orange lines, respectively.
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Figure S.4. Pipe flow: P + and κy+P + are shown in (a) and (b), respectively, according to DNS data of
Chin et al. [28] for Reτ = 2003 (black lines) in comparison to PVM-P predictions for Reτ = (2003, 105, 1010)
shown by magenta, cyan, and orange lines, respectively.
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Figure S.5. TBL: P + and κy+P + are shown in (a) and (b), respectively, according to DNS data of Sillero
et al. [29,30] for Reτ = 1989 (black lines) in comparison to PVM-P predictions for Reτ = (1989, 105, 1010)
shown by magenta, cyan, and orange lines, respectively.
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Figure S.6. DNS (black lines) versus model comparisons of ν+
t /Reτ : (a) channel flow DNS data of Lee

& Moser [26,27] at Reτ = 5186; (b) pipe flow DNS data of Chin et al. [28] at Reτ = 2003; (c) TBL DNS
data of Sillero et al. [29,30] at Reτ = 1989. The model curves (magenta lines) present the asymptotic profiles
Eqs. (S.15), (S.16). The pink lines show the corresponding exact PVM-TV profiles, which include Reτ effects.
The black dashed lines show Re−1

τ ν+
t = κy. Figure (d) shows Cµ calculated from Eq. (S.17) for given Reτ

and the three flows considered. The pipe and TBL curves are separated by ∆Cµ = +0.2, respectively. The
Reτ = 104 curves do not show visible differences to the asymptotic limit Eq. (S.18).
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