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ABSTRACT
Understanding of the structure of turbulent flows at extreme
Reynolds numbers (Re) is relevant because of several reasons: almost
all turbulence theories areonly valid in thehighRe limit, andmost tur-
bulent flows of practical relevance are characterized by very high Re.
Specific questions about wall-bounded turbulent flows at extreme
Re concern the asymptotic laws of the mean velocity and turbulence
statistics, their universality, the convergence of statistics towards
their asymptotic profiles, and the overall physical flow organization.
In extensionof recent studies focusingon themean flowatmoderate
and relatively highRe, the latter questions are addressedwith respect
to three canonical wall-bounded flows (channel flow, pipe flow, and
the zero-pressure gradient turbulent boundary layer). Main results
reported here are the asymptotic logarithmic law for themean veloc-
ity and corresponding scale-separation laws for bulk flow properties,
the Reynolds shear stress, the turbulence production and turbulent
viscosity. A scaling analysis indicates that the establishment of a self-
similar turbulence state is the condition for the development of a
strict logarithmic velocity profile. The resulting overall physical flow
structure at extreme Re is discussed.

ARTICLE HISTORY
Received 12 May 2018
Accepted 2 March 2019

KEYWORDS
Wall-bounded turbulent
flows; extreme Reτ ; mean
flow and turbulence
structure

1. Introduction

Investigations of the structure of turbulent flows at extreme Reynolds numbers are impor-
tant due to several reasons [1–6]. Such flows are characterized by a large separation of scales
between the largest and smallest turbulent motions, so their study offers the best chance to
understand the mathematical physical structure of wall-bounded turbulent flows. Corre-
spondingly, almost all theories of turbulence are valid only in the high Reynolds number
limit [6]. In addition, most turbulent flows of practical relevance are characterized by very
high Reynolds numbers. To develop and to evaluate the performance of computational
simulation methods (like large-eddy simulation (LES) [7–12] and hybrid dynamic LES
methods [13–20]) for such flows, we need to understand the structure of turbulent flows
at extreme Reynolds numbers.
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Specific problems in this regard concern, for example,

(P1) Asymptotic Laws: Which self-similar flow structure is established for extreme fric-
tion Reynolds numbers Reτ (how much differ asymptotic and lower Reτ profiles)?

(P2) Scaling: How do flow statistics converge to the asymptotic state depending on
Reτ (is the Reτ scaling of different variables comparable; how are turbulence
self-similarity and the log-law onset related)?

(P3) Physics: How is the flow physically organized at extreme Reτ (inner-outer
scale interactions [21,22]; interaction of streamwise and wall-normal turbulent
motions [23,24])?

A basis for addressing the latter questions was provided by a recent identification of
the physics of the mean flow structure of several wall-bounded turbulent flows [25] based
on recent direct numerical simulation (DNS) and experimental data [26–39]. This study
resulted in analytical conclusions about the mean flow structure, its universality and the
mechanism of flow-dependent features [25]. Technically, the basic goal of this paper is
to extend this analysis, first, by the inclusion of the Reynolds shear stress (which allows
conclusions about relevant turbulence characteristics like the turbulent viscosity and tur-
bulence production), and, second, by an analysis of asymptotic features of themean velocity
and Reynolds shear stress for the same three wall-bounded turbulent flows as consid-
ered before [25]. One main focus of these studies is on the appearance, universality and
extent (the start and end of the log-law) of logarithmic mean velocity variations and
their relationship to corresponding laws for turbulence characteristics (the Reynolds shear
stress, turbulent viscosity and turbulence production, the production-to-dissipation ratio
of turbulent kinetic energy, and the correlation of wall-normal and streamwise turbulent
motions). Another main focus is on the better physical understanding of the overall flow
organization, the relationship of active and inactive turbulence [22,40–43], inner-outer
scale interactions [21,22] and the interaction of streamwise and wall-normal turbulent
motions [23,24].

The paper is organized in the following way. Section 2 introduces the mean velocity
model presented in Ref. [25] and a corresponding analytical model for the Reynolds shear
stress. The problems P1, P2, and P3 described above are addressed in Sections 3,4, and 5,
respectively. Section 6 summarizes the conclusions obtained.

2. Analytical models considered

The basis for addressing the problems P1, P2, and P3 introduced in Section 1 is provided
here by presenting the model for the mean velocity U+ derived in Ref. [25] in Section 2.1,
and a corresponding analytical model for the Reynolds shear stress 〈u′v′〉+ in Section 2.2.
These models imply further models considered below: models for the bulk velocity U+

b =∫ 1
0 U+dy, skin friction coefficientCf = 2/U+2

b , bulk Reynolds numberRe = 2ReτU+
b , tur-

bulence production P+ = −〈u′v′〉+S+, and turbulent viscosity ν+
t = −〈u′v′〉+/S+. Here,

the superscript + refers to inner scaling, and we use y+ = Reτ y for the inner scaling
wall distance (y is normalized by δ, which is the half-channel height, pipe radius, or 99%
boundary layer thicknesswith respect to channel flow, pipe flow, and theTBL, respectively).
S+ =∂U+/∂y+ refers to the characteristic shear rate.
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2.1. Mean velocitymodel

A presentation of the probabilistic velocity model (PVM) that enables its probabilistic
interpretation reads [25]

U+ = κ−1ln(K∗YeκU
+∞). (1)

Here, the von Kármán constant κ = 0.40, and U+∞ = κ−1(ln Reτ + C) is the center-
line/freestream maximum velocity with C = (2.076, 2.382, 3.261) for channel, pipe, and
TBL flow. Equation (1) also involves K∗ = y−1

κ eσκU+
1∞−C and Y. Here, Y represents a

modification of y due to the damping effect of the wall, and K∗ represents (via the involve-
ment of σ ) a modification of the flow-dependent constant K = y−1

κ eκU
+
1∞−C due to wake

effects. In K = y−1
κ eκU

+
1∞−C we have yκ = 75.8 and U+

1∞ = 15.85, which implies K =
(0.933, 0.687, 0.285) for channel, pipe, and TBL flow, respectively. In the absence of bound-
ary effects we find K∗ = K and Y = y. A discussion of deviations of K∗ and Y from K and
y, respectively, can be found in Ref. [25]. An analytical model for the characteristic shear
rate S+ =∂U+/∂y+ implied by Equation (1) reads

S+ = S+
1 + S+

2 + S+
3 + SCP1 + SCP2 . (2)

This equation includes inner-scale contributions

S+
1 = 1 −

[
(y+/a)b/c

1 + (y+/a)b/c

]c

, κy+S+
2 = 1 + h3/[1 + y+/h1]

1 + yκ/(y+H)
, (3)

where H = 1/[1 + h1/y+]h3 and a=9, b=3.04, c=1.4, h1 = 12.36, and h3 = 6.47.
Equation (2) also includes the contribution S+

3 due to wake effects, which is defined by
Equation (A.20) in Ref. [25]. The additional contributions SCP1 and SCP2 ensure correct outer
boundary conditions for pipe and channel flow. These contributions are defined in the
Supplementary Material related to Ref. [25]. SCP1 and SCP2 are very small, but they matter
regarding the calculation of turbulent viscosities.

For all the three flows considered, the bulk velocity is defined by U+
b = ∫ 1

0 U+ dy. An
analytical model for U+

b results from the combination of Equations (S.1) and (S.3) in
Suppl. S.1. The skin-friction coefficient based on the bulk velocity is Cf = 2/U+2

b , and
Re = 2ReτU+

b refers to the bulk Reynolds number, which is based on the bulk velocity.
These analytical models for U+

b , Cf and Re will be referred to below as PVM-Ub, PVM-Cf
and PVM-Re, respectively.

One key ingredient of the derivation of the PVMwas themodal decomposition of mean
velocities via the identification of wall damping and wake effects. Another key ingredient
of deriving Equation (1) was the inclusion of governing equations and identification of
linear physics regimes related to the modal velocity decomposition. The fact that several
model parameters are involved does not imply that the PVM is an empirical model. A
thorough discussion of the ability of the PVM to correctly reflect flow physics can be found
in Ref. [25], see Sections 3.2–3.4 on observational physics criteria, physics validation, and
comparisons with empirical velocity models. A comprehensive comparison of the PVM
versus both experimental data and DNS can be found in Appendix B of Ref. [25] with
respect to bothmoderate and high Reτ . The latter comparisons with DNS and experiments
reveal an impressive performance of the PVM.
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Figure 1. Channel flow: (a) shows S+ − 〈u′v′〉+ obtained from the DNS data of Lee & Moser [26,27] for
Reτ given in (b) in comparison toMCP = 1 − y (thick chartreuse line). Figure (b) shows the relative error
ofMCP .

2.2. Reynolds shear stressmodel

The results presented in reference [25] can be extended to the prediction of the Reynolds
shear stress 〈u′v′〉+ by taking advantage of the momentum balance, S+ − 〈u′v′〉+ = M,
where M refers to the total stress and S+ = ∂U+/∂y+ refers to the characteristic shear
rate. The calculation of M is addressed in terms of Figures 1–3, which demonstrate the
suitability ofM = MCP for channel and pipe flow andM = MBL for the TBL, where

MCP = 1 − y, MBL = e−y6−1.57y2 . (4)

Here, M = MCP corresponds to the theoretically well-known result for channel and pipe
flow, andM = MBL is supported by the DNS data presented here (a theoretical result that
explains the structure of M = MBL is unavailable according to the author’s knowledge).
The most relevant result of Figure 3(a) is given by the fact that the DNS data considered
(see the discussion of TBL DNS in reference [25]) collapse very well, this means there is no
indication of Reynolds number effects. It has to be noted that this conclusion is based on
a limited range of variation of the Reynolds number. Further support for this view arises
from (i) the fact that MCP is known to be unaffected by the Reynolds number and (ii)
the analysis of the mechanisms of flow effects in reference [25]. The modeling of ln MBL
(instead ofMBL) as a polynomial ensures a smooth, non-oscillating decay ofMBL. Evidence
for the structure ofMBL according to Equation (4) is provided by the inset in Figure 3. We
see that the initial stage of ln MBL is a linear function of y2. The consideration of a polyno-
mial of third order in y2 is then appropriate to accurately represent ln MBL. In particular,
the model curve closely follows the highest Reynolds number data curve (Reτ = 1989),
which has the smallest relative error: see Figure 3(b). The relative errors related to using
Equation (4) are shown in Figures 1(b), 2(b), and 3(b) according to the DNS data consid-
ered. It is remarkable that the absolute channel flow error of less than 0.3% is one order of
magnitude below the corresponding absolute relative errors of less than 3% for pipe flow
and the TBL. In particular, the TBL error, which is slightly smaller than the corresponding
pipe flow error, further supports the suitability ofM = MBL given by Equation (4).

A corresponding analytical Reynolds shear stress model follows from using 〈u′v′〉+ =
S+ − M in conjunction with Equation (4) for M. The latter relations imply further mod-
els. Analytical models for the turbulence production and turbulent viscosity are given by
P+ = −〈u′v′〉+S+ and ν+

t = −〈u′v′〉+/S+. Themodels for 〈u′v′〉+, P+, and ν+
t , which are
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Figure 2. Pipe flow: Figure (a) shows S+ − 〈u′v′〉+ obtained from DNS data of Chin et al. [28] for Reτ
given in (b) compared toMCP = 1 − y (thick chartreuse line). Figure (b) shows the relative error ofMCP .

Figure 3. TBL: Figure (a) shows S+ − 〈u′v′〉+ obtained from DNS data of Sillero et al. [29,30] for Reτ
given in (b) compared toMBL = e−y6−1.57y2 (thick chartreuse line). Inset upper right:−ln (S+ − 〈u′v′〉+)

for relatively small y2 for the sameDNSdata. The chartreuse and dashed chartreuse lines shows 1.57y2 +
y6 and 1.57y2, respectively. Figure (b) shows the relative error ofMBL.

directly implied by the PVM, will be referred to below as PVM-UV, PVM-P, and PVM-TV,
respectively. Direct evidence for the suitability of 〈u′v′〉+ models obtained by involving the
momentum balance is given in Figure 4 with respect to the Reynolds shear stress for chan-
nel flow, pipe flow, and the TBL. Figures (S.3)–(S.6) in the related Supplementary Material
show corresponding direct evidence for the suitability ofmodels for the turbulence produc-
tion and turbulent viscosity for all three flows considered. In particular, these comparisons
present model versus DNS comparisons at the highest Reτ for which DNS data are avail-
able. Corresponding comparisons at lowerReτ (not shown) demonstrate the same excellent
model performance.

An overview of models involved in the discussions below is given in Table 1. The nota-
tion PVM-xx, where xx refers to the specific model, is applied to refer to models that are
directly implied by the PVM and momentum models. The asymptotic versions of these
models at infinite Reτ are denoted by the subscript ∞.

3. P1: Asymptotic mean flow and turbulence

The models presented in Section 2 are used now to obtain conclusions regarding prob-
lem P1: the asymptotic mean flow and turbulence structure at extreme Reτ (velocity
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Figure 4. DNS (black lines) versus model (magenta and cyan lines for the given Reτ ) comparisons of
Reynolds shear stresses: (a) channel flow DNS data of Lee & Moser [26,27], the upper right inset shows
corresponding pipe flow DNS data of Chin et al. [28]; (b) TBL DNS data of Sillero et al. [29,30].

Table 1. Models applied, their asymptotic limits and convergence towards asymptotic limits.

Models Variables Section 2: Models Section 3: Limits Section 4: Conv.

PVM U+ , S+ = ∂U+/∂y+ (1), (2) see Section 3.1 see Section 4.1
PVM-Ub U+

b = ∫ 1
0 U+dy (S.1), (S.3) U+

b∞ Eqs. (8) Eb Equation (17)
PVM-Cf Cf = 2/U+2

b U+
b Equation Cf∞ = 2/U+2

b∞ Eb Equation (17)
PVM-Re Re = 2ReτU

+
b U+

b Equation Re∞ = 2ReτU
+
b∞ Eb Equation (17)

PVM-UV 〈u′v′〉+ = S+ − M S+ ,M Eq. (4) 〈u′v′〉+∞ Equation (9) Euv Equation (14)
PVM-P P+ = −〈u′v′〉+S+ 〈u′v′〉+ , S+ P+∞ Equation (10) EP Equation (15)
PVM-TV ν+

t = −〈u′v′〉+/S+ 〈u′v′〉+ , S+ ν+
t∞ Equation (11) Eν Equation (16)

Notes: Regarding the PVM, Sections 3.1,4.1 do not focus on the derivation of asymptotic velocity limits and the related con-
vergence, they focus on the identification and manifestation of the velocity log-law at sufficiently high Reτ , respectively.
The velocity convergence and convergence of other variables are addressed in Figures 6 and 8, respectively.

log-law and subscript ∞ variables, see Table 1). The velocity log-law is considered in
Section 3.1, and Section 3.2 deals with a Reynolds shear stress and bulk flow property
analysis. Consequences for the bulk velocity, skin-friction coefficient and bulk Reynolds
number (which are presented in detail in Suppl. S.1) and turbulence production and turbu-
lent viscosity (which are considered in detail in Suppl. S.2) are summarized in Section 3.2.
The convergence towards asymptotic profiles (problem P2) is not considered here but in
Section 4.

3.1. Velocity log-law identification

The conclusion of the analysis of the validity of U+ = κ−1ln y+ + B (κ refers to the von
Kármán constant and B is a constant) for the mean streamwise velocity U+ in Section II
of Ref. [25], which was based on the very accurate channel flows DNS data of Lee &
Moser [26,27] atReτ = 5186, was that there is no real support for the validity of the log-law
[44] at this Reτ . The question of whether or not there is asymptotically a log-law can be
addressed, however, by using the PVM. In absence of boundary effects, the PVM implies
that U+ = κ−1ln(KyeκU+∞) = U+∞ + κ−1ln(Ky) is given for all the three flows considered
by

U+ = κ−1ln
(y+

yκ

)
+ U+

1∞ = κ−1ln y+ + 5.03, (5)
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whereK = y−1
κ eκU

+
1∞−C andU+∞ = κ−1(ln Reτ + C) are applied. An alternative writing of

the latter equation is given by the the corresponding velocity defect law,

U+
∞ − U+ = −κ−1ln

( y
yκ

)
− U+

1∞ + C
κ
. (6)

Thus, the PVM implications are fully consistent with the log-law equations U+ =
κ−1ln y+ + B and U+∞ − U+ = −κ−1ln y + Bdef , Bdef being a constant.

In addition to considering the logarithmic limit of U+, it is also of interest to consider
the extreme velocity limit of U+ normalized to its centerline/freestream maximum U+∞.
Depending on the validity of the mean velocity model U+ = κ−1ln y+ + B + �(y,Reτ )
considered (which neglects variations in the viscous region and considers B and the wake
function �(y,Reτ ) to be not specified), Pullin et al. [5] recently concluded that the local
mean velocity must approach the outer velocity for increasing Reynolds numbers at any
fixed ratio of the wall-normal location to the outer length scale. By using U+ = U+∞ +
κ−1ln(Ky) and U+∞ = κ−1ln (eCReτ ) we obtain

U+

U+∞
= 1 + ln (Ky)

ln (eCReτ )
. (7)

Hence, in agreement with the assumption of Pullin et al. [5] the PVMpredicts a (very slow)
convergence of U+ to U+∞ indirectly proportional to ln (eCReτ ) at infinite Reτ .

3.2. Asymptotic turbulence and bulk flow properties

To prepare the discussion of the convergence behavior of turbulence and bulk flow prop-
erties in Section 4.2, let us consider next the asymptotic profiles of bulk flow variables. As
shown in detail in Suppl. S.1, the asymptotic bulk velocities for channel flow, pipe flow, and
the TBL are given by

U+
b∞ = κ−1ln(3Reτ ), U+

b∞ = κ−1ln(3.52Reτ ), U+
b∞ = κ−1ln(5.69Reτ ), (8)

respectively. The latter bulk flow profiles enable the calculation of the asymptotic skin
friction coefficient and bulk Reynolds number profiles via Cf∞ = 2/U+2

b∞ and Re∞ =
2ReτU+

b∞, respectively. For channel flow, e.g. the relative error of U+
b∞ compared to U+

b
is (0.64, 0.41, 0.06, 0.007)% for Reτ = (500, 103, 104, 105), respectively, see also Figure 8.
The relative Cf∞ error compared to Cf is twice the U+

b∞ error, and the relative Re∞ error
compared toRe is equal to theU+

b∞ error. A discussion of asymptoticCf∞ andRe∞ profiles
can be found in Suppl. S.1, including a comparison with experimental channel flow data.

The asymptotic features of the Reynolds shear stress 〈u′v′〉+ are presented in Figure 4.
This figure demonstrates again the excellentmodel performance by a comparison ofmodel
predictions and DNS data for the highest available Reτ . It also showsmodel predictions for
the almost infinite Reynolds number Reτ = 1030. It is remarkable that there are relatively
minor differences between the DNS data and the extreme Reτ limit. It can be seen that
〈u′v′〉+ = −M over almost all the flowwith an exception of a very narrow near wall region.
Figure 5 enables a deeper analysis of these features. The little influence of Reynolds number
effects seen in Figure 4 suggests to consider the suitability of approximating the Reynolds
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Figure 5. In (a), 〈u′v′〉+ according to the PVM-UV (solid lines) and 〈u′v′〉+∞ (dashed lines) are shown
for channel flow (black), pipe flow (blue), and the TBL (red) for Reτ = 500. Pipe flow and TBL curves are
separated by−	〈u′v′〉+ = +0.3. In (b), the modeled Reynolds shear stress (pink lines) for Reτ = 1030

is compared to κy+S+ (black lines) for channel flow.

shear stress by a self-similar asymptotic profile (a product of functions of y+ and y). The
Reynolds shear stress is defined by −〈u′v′〉+ = M(1 − S+/M) [25]. Close to the wall, we
can approximate the second term by usingM=1 and S+ = S+

1 + S+
2 , where S

+
1 and S+

2 are
given by Equation (3). Correspondingly, we consider the suitability of

− 〈u′v′〉+∞ = M(1 − S+
1 − S+

2 ). (9)

This self-similar relation implies that−〈u′v′〉+∞/M (M is only a function of y) is only a func-
tion of y+. Figure 5(a) shows that 〈u′v′〉+∞ approximates 〈u′v′〉+ for Reτ = 500 extremely
well for all three flows considered. The difference between 〈u′v′〉+∞ and 〈u′v′〉+ becomes
smaller with increasing Reτ (see Section 4.2). For Reτ ≥ 104 there is no visible difference
between 〈u′v′〉+∞ and 〈u′v′〉+. The structure of 〈u′v′〉+ compared to κy+S+ is shown in
Figure 5(b) for the extreme Reτ = 1030 and only for channel flow: corresponding pipe flow
and TBL curves are very similar. Like seen regarding the velocity field, the separation of
inner (y+) and outer (y) scalings takes place in the log-layer where 〈u′v′〉+ = −1.

The latter results have implications for two relevant combinations of the Reynolds shear
stress 〈u′v′〉+ and shear rate S+: the production P+ = −〈u′v′〉+S+ of turbulent kinetic
energy and the turbulent viscosity ν+

t = −〈u′v′〉+/S+. A derivation and discussion of the
asymptotic production

P+
∞ = 1

4
−

(1
2

− [S+
1 + S+

2 ]
)2

(10)

can be found in Suppl. S.2. Here, S+
1 and S+

1 are only functions of y+, see Equation (3). A
derivation and discussion of the asymptotic ν+

t is provided in Suppl. S.2, we find

ν+
t∞ = C∞

μ ν+as
t . (11)

Equation (11) reflects the separation of inner and outer scaling (ν+
t∞ is the product of

functions of y and y+). For all the three flows considered, the asymptotic C∞
μ reads

C∞
μ = 1

κy+(S+
1 + S+

2 )
− 1

κy+ , (12)

which is only a function of y+. The flow-dependent ν+as
t is ν+as

t = κy+/GCP for channel
and pipe flow, and for the TBL, we have ν+as

t = κy+MBL/GBL. Here, MBL = e−y6−1.57y2 ,
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and GCP and GBL, which are only functions of y, are defined by [25]

GCP = 1 + y + y2(1.6 + 1.8y)
Ky + (1 − y)2(0.6y2 + 1.1y + 1)

, GBL = 1 + (0.9 + 2y + 3.27y2)y
1 + Kyey(0.9+y+1.09y2)

. (13)

For relatively small y, both GCP and MBL/GBL are equal to one. By applying the approx-
imations GCP = 1 and MBL/GBL = 1, we find ν+as

t = κy+, which is the same for all the
three flows considered. The relation ν+as

t = κy+ simply results from the log-layer scaling
of S+. This means, the use of ν+as

t = κy+ corresponds to the neglect of wake effects. The
result ν+as

t = κy+ can be also written dimensionally as νast = κδyuτ or νast = 
muτ , where

m = κδy refers to a mixing length scale [45].

4. P2: Mean flow and turbulence convergence

Next, the problem P2 described in the introduction will be addressed, this means we ask
how mean flow and turbulence properties converge to their asymptotic profiles. In partic-
ular, the manifestation of the velocity log-law will be considered in Section 4.1, and the
convergence of turbulence and bulk flow properties will be addressed in Section 4.2.

4.1. Velocity log-lawmanifestation

Let us consider the manifestation of the velocity log-law with increasing Reynolds num-
bers. This will be done in the next three paragraphs by considering velocity structure
changes depending on Reτ , the extent of κy+S+ variations, and implications regarding
the extent of the log-law region.

First, let us begin with a discussion of the question of how the structure of the PVM
changes with Reτ . Figure 6(a) presents κy+S+ according to the analytical shear model for
the three flows considered for Reτ = (104, 105, 106), a Reτ range which covers the highest
Reτ involved in the comparisons presented in reference [25]. Here, κy+S+ serves as log-law
indicator: κy+S+ = 1 reflects the log-law,which can be obtained by integration.Deviations
from κy+S+ = 1 appear due to velocity variations in the viscous sublayer/buffer layer and
the wake region (see also Figure 6(b) for better clarity). Velocity variations in the viscous
sublayer/buffer layer are attached to the wall: unaffected by Reτ they scale with y+. Velocity
variations in the wake region can be considered to be attached to the centerline/freestream:
a plot versus y shows that these variations take place in the same y region independent
of Reτ . The differences seen in Figure 6(a) for different Reτ result from a shift along the
ln y+ axis according to Reτ . Due to the increasing separation of velocity variations in the
viscous sublayer/buffer layer and the wake region, an increasing Reτ leads to an increasing
plateau region of κy+S+ with values close to 1. For a much larger range of Reτ , Figure 7
shows U+ and κy+S+ for the three flows considered up to extreme Reτ . The TBL model
curves are plotted up to y = e3. This figure shows that the trends seen in Figure 6(a) simply
continue for higher Reτ without any change: the overlap region becomes larger and larger,
and velocity variations in the viscous sublayer/buffer layer and thewake region are attached
to thewall and centerline/freestream.Wake effects do not disappear: thewake effect is small
with respect to channel and pipe flow, but present.

Second, let us continue the discussion in the preceding paragraph with an attempt to
quantify the extent of κy+S+ variations. This question is addressed in terms of Figure 6(b),
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Figure 6. The log-law indicator κy+S+ obtained from the PVM is shown in (a) for the given Reτ and the
three flows considered (channel flow: solid line; pipe flow: short dashes; TBL: long dashes). In (b), only
the Reτ = 106 curves are shown. The red bars indicate the range of velocity variations in the viscous
sublayer/buffer layer (left) and the wake region (right).

Figure 7. U+ and κy+S+ according to the PVM are shown in (a) and (b), respectively, for channel flow,
pipe flow, and the TBL for the given Reτ . InFigure (a), the data are separated by	U+ = 10. In Figure (b),
the data are moved up by+3 and+6 for pipe flow and the TBL, respectively.

which shows for better clarity only the Reτ = 106 curves. Different criteria may be applied
to quantify the spatial extent of κy+S+ variations in the wake region. After about one
decade (illustrated by the red horizontal bar on the right-hand side in Figure 6(b)), κy+S+
differs from one by less than 1% for channel flow. So we will use one decade to quantify the
spatial variation of wake effects for channel flow. By using the same criterion (a deviation
of κy+S+ from one by less than 1%) we find for pipe flow and the TBL spatial extents of
about 1.5 and 1.6 decades, respectively. The corresponding horizontal bars are also shown
in Figure 6(b). By using again a deviation of less than 1%, we find a spatial variation over
3.3 decades for κy+S+ variations in the viscous sublayer/buffer layer. The corresponding
horizontal bar (which ends at about y+ = 2000) is also shown.

Third, the consequence of this discussion is the following. The consideration of DNS
data at Reτ = 5186 (ranging over ln(5186)/ln(10) = 3.71 decadesmeasured from y+ = 1)
is insufficient to observe a log-law according to the criteria applied here: for channel
flow, e.g. the variations of κy+S+ in the viscous sublayer/buffer layer and wake region
cover about 3.3 + 1 = 4.3 decades. This fact explains why the discussion related to
U+ = κ−1ln y+ + B in reference [25] did not provide support for the validity of the log-
law. The highest Reτ considered for the PVM validation in reference [25] are pipe flow
measurements at Reτ ≈ 105. With respect to the discussions related to Figure 6, this case
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corresponds to the consideration of variations over ln(105)/ln(10) = 5 decades. For this
case, the variations of κy+S+ in the viscous sublayer/buffer layer and wake region cover
about 3.3 + 1.5 = 4.8 decades. Therefore, this case enables the validation of the log-law,
although the range of log-law variation is still less than one decade.

It has to be noted that the criteria for identifying the log-law applied here are very strict.
Obviously, by slightly relaxing these criteria, we find a more extended region that behaves
log-law-like (the log-law region is sometimes considered to start at y+ = 200 [46], which
adds a full decade to the log-law region considered here). In this regard, it is also of interest
to refer to the lower log-law bound 3Re1/2τ considered by Marusic et al. [47]. The authors
note that such a scaling contradicts to classical theories, and that the observations presented
do not prove the correctness of bounds applied: they are simply used for the purpose of
curve fitting the parameters in logarithmic equations. An argument against the lower log-
law bound 3Re1/2τ is the following. By using 3Re1/2τ , the log-law region of channel flow at
Reτ = 5186 would be expected to start at y+ = 216. But Lee and Moser [26] report that
there is no log-law region for Reτ = 5186.

4.2. Convergence of turbulence and bulk flow properties

Let us have a closer look at howmeanflowcharacteristics (the bulk velocity) and turbulence
characteristics (the Reynolds shear stress, turbulence production, and turbulent viscosity)
converge to an asymptotic state. The main motivation to do so is to see how the devel-
opment of a logarithmic velocity profile is related to the development of self-similarity
of other flow properties. In order to simplify matters, the following discussion will be
presented by focusing on channel flow. The corresponding features of pipe flow and the
TBL are very similar.

Let us begin with specifying relative deviations to quantify asymptotic convergence.
To assess relative deviations of the Reynolds shear stress and turbulence production, we
consider first the deviations 	uv and 	P, respectively, between these variables and their
asymptotic profiles. It turns out that these variables have maximum values very close
to the wall. In this case, we have 	uv = |〈u′v′〉+ − 〈u′v′〉+∞| = |S+ − M(S+

1 + S+
2 )| =

|S+
1 + S+

2 − M(S+
1 + S+

2 )| = Re−1
τ F(y+), where F(y+) = y+(S+

1 + S+
1 ). It is worth noting

that S+
2 , basically, does not contribute here in comparison to S+

1 . A corresponding analysis
shows that	P = |P+ − P+∞| is equal to	uv , this means	uv = 	P. The analysis of F(y+)

shows that this function has a maximum FM = 5.608 at y+
M = 9.57. Hence, we find max-

imum deviations 	uv,max = 	P,max = FM/Reτ at y+ = y+
M . On this basis, we can define

the relative deviation of the Reynolds shear stress in percent by

Euv = − 100	uv,max

(〈u′v′〉+)y+=y+M
= 100y+

M
(y+

M/FM − 1)Reτ
= 1355

Reτ
, (14)

where −(〈u′v′〉+)y+=y+M
= 1 − FM/y+

M , and the corresponding relative deviation of the
turbulence production is given by

EP = 100	P,max

(P+)y+=y+M
= 100y+

M
(1 − FM/y+

M)Reτ
= 2312

Reτ
. (15)
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Figure 8. The Reτ dependence of relative deviations Euv , EP , Eν , and Eb (see Equations (14) –(17)) of flow
characteristics from their self-similar profiles.

Regarding the turbulent viscosity ν+
t , it turns out that the largest deviation from its

asymptotic profile ν+
t∞ = C∞

μ ν+as
t is found at y=1. At the point y=1, we have ν+

t (1) =
κReτK/5.4 − 1 and ν+

t∞(1) = ([S+
1 (1) + S+

2 (1)]−1 − 1)K/5.4. The corresponding relative
error is defined by

Eν = 100
ν+
t (1) − ν+

t∞(1)
ν+
t (1)

. (16)

With respect to mean flow properties, U+ and, therefore, S+ do not establish self-similar
profiles because they represent superpositions of several contributions. In comparison to
the scaling of turbulence characteristics, it is, however, of interest to consider integral
velocity characteristics, this means the scaling of how the bulk velocity U+

b asymptoti-
cally approaches its logarithmic limit U+

b∞ (see the discussion in Suppl. S.1). The relative
deviation of the bulk velocity from its logarithmic asymptotic variation in percent reads
Eb = 100|U+

b − U+
b∞|/U+

b∞. According to Equations (S.1) and (S.4), we have

Eb = 100(I12 − 1)
ln(3Reτ )

. (17)

The corresponding relative deviation of the bulk Reynolds number is equal to Eb, and the
corresponding relative deviation of the skin-friction coefficient is 2Eb.

The relative deviationsEb,Euv ,EP, andEν of flow characteristics are shown in Figure 8 in
dependence on Reτ . For Reτ ≥ 20, 000, all these relative deviations are smaller than 0.1%,
i.e. the turbulence characteristics have, basically, self-similar profiles, which is reflected
regarding the mean flow by a logarithmic variation of the bulk velocity.

The results reported here support for the channel flow considered the following view
of overall asymptotic flow variations with Reτ . At about Reτ = 20, 000, the turbulence
characteristics considered here have established self-similar states. According to the dis-
cussion in Section 4.1, it needs velocity variations over at least 4.3 decades (measured from
y+ = 1) to observe a strict log-law, and Reτ = 20, 000 satisfies this constraint: we have
velocity variations ranging over ln(20, 000)/ln(10) = 4.3 decades. These findings indicate
that the establishment of a self-similar state implied by the scale separation of inner and
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outer scalings is the condition for the development of a strict logarithmic velocity profile.
By using corresponding criteria derived for pipe flow and the TBL in Section 4.1 (velocity
variations over 4.8 and 4.9 decades, respectively), we may expect that corresponding criti-
cal Reynolds numbers for the observation of a strict log-law for pipe flow and the TBL are
given by about Reτ = 63, 000 and Reτ = 80, 000, respectively.

5. P3: Asymptotic flow organization

Let us finally address problem P3: we use findings presented above to obtain a bet-
ter understanding of the asymptotic physical flow structure. To prepare this discussion,
Section 5.1 deals with extensions of results obtained before via a discussion of the turbu-
lence production-to-dissipation ratio and the correlation of streamwise and wall-normal
turbulent motions. Implications of observations regarding the understanding of turbu-
lence components and the asymptotic flow structure are discussed in Sections 5.2 and 5.3,
respectively.

5.1. Production and correlation balances

Let us address two questions (which can be seen to be related to the use of different
normalizations for the Reynolds shear stress), which are closely related to the discus-
sions presented before. In contrast to the analysis above, clarification on these questions
requires information in addition to the analytical models presented above (it requires the
dissipation rate of turbulent kinetic energy and Reynolds normal stresses).

With respect to the turbulence production P+, a very important question is its ratio to
the normalized dissipation rate ε+ = εν/u4τ . With respect to channel flow DNS data at the
highest available Reynolds number Reτ = 5186, Lee &Moser [26,27] concluded that there
is currently no evidence for the existence of a regime where production and dissipation
clearly balance each other. However, relevant conclusions regarding this question can be
drawn by taking reference to a recent analysis of ε [48]. In particular, Abe andAntonia con-
sidered thematching of ε scalings in an overlap region corresponding to the velocity scaling
(see Section II of reference [25]). They concluded that ε scales in this overlap region accord-
ing to εyδ/u3τ = 1/κ if Reτ is sufficiently large. It is worth noting that this observation
is independent of the existence of a velocity log-law or the assumption of a production-
dissipation balance. By taking reference to Reτ = uτ δ/ν, the latter scaling can be written
ε+ = 1/(κy+). Evidence for this scaling is provided in terms of Figure 9: the Reτ = 5186
curve in Figure 9(b) demonstrates the correctness of this scaling, and Figure 9(a) shows
that the range of applicability of this scaling extends for increasing Reτ (simultaneously,
this figure also illustrates the difficulty to obtain an general analytical expression for ε cor-
responding to the PVM). The combination of ε+ = 1/(κy+) with the conclusion that P+
scales in the log-law region with 1/(κy+) leads then to P+/ε+ = 1 for sufficiently large
Reτ in the log-law region. This result matters regarding the design of turbulence models
that often apply P+/ε+ = 1.

Another relevant question concerns the asymptotic structure of the correlation coef-
ficient ρuv = 〈u′v′〉+/(〈u′u′〉+〈v′v′〉+)1/2, which measures the interaction of streamwise
and wall-normal turbulent motions. TBL analyzes support the view that ρuv decreases
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Figure 9. The dissipation rate ε+ is shown in (a) according to the DNS data of Lee & Moser [26,27] for
the given Reynolds numbers. For clarity, only the Reτ = 5186 curve is shown in (b). In both plots, the
dashed pink curves shows the asymptotic scaling ε+ = 1/(κy+).

Figure 10. The correlation coefficients ρuv = 〈u′v′〉+/(〈u′u′〉+〈v′v′〉+)1/2 are shown in (a) according
to the channel flowDNSdataof Lee&Moser [26,27] and in (b) according to the channel flowexperimental
data of Schultz & Flack [31] for the given Reτ .

with an increasing Reynolds number [23,24]. For extreme Reτ , this would imply a decou-
pling of streamwise and wall-normal turbulent motions (because of an increasing scale
separation between streamwise and wall-normal turbulent velocities). Figure 10 shows
the correlation coefficient ρuv for channel flow according to the very accurate DNS data
of Lee & Moser [26,27] and experimental data of Schultz & Flack [31] for the available
range of Reτ . First, this comparison reveals a discrepancy between DNS and experimen-
tal data: the experimental data slightly under-predict ρuv . Second, the Reynolds number
effects may indeed support the view that the correlation coefficient decreases with Reτ . A
more detailed view of that can be obtained by considering the factor (〈u′u′〉+〈v′v′〉+)−1/2

in ρuv = 〈u′v′〉+/(〈u′u′〉+〈v′v′〉+)1/2, which is shown in Figure 11. We see again a dis-
crepancy between DNS and experimental data. Although the Reynolds number range is
limited, it seems that there is no indication that (〈u′u′〉+〈v′v′〉+)−1/2 disappears asymp-
totically. In particular the close agreement of the highest Reτ curves supports the view
that (〈u′u′〉+〈v′v′〉+)−1/2 converges to a nonzero asymptotic distribution. Combined
with the asymptotic Reynolds shear stress behavior −〈u′v′〉+∞ = M(1 − S+

1 − S+
2 ), see

Equation (9), it appears that the correlation coefficient converges to a nonzero asymptotic
profile. Hence, in correspondence to the local balance of production and dissipation of
turbulent kinetic energy in the log-layer, streamwise and wall-normal turbulent motions
seem to approach an asymptotic equilibrium state of interaction.
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Figure 11. The factors (〈u′u′〉+〈v′v′〉+)−1/2 in ρuv = 〈u′v′〉+/(〈u′u′〉+〈v′v′〉+)1/2 are shown in (a)
according to the channel flow DNS data of Lee & Moser [26,27] and in (b) according to the channel flow
experimental data of Schultz & Flack [31] by using the same color code as in Figure 10.

5.2. Local and non-local turbulence

Let us try to relate the analytical conclusions reported above to ideas about properties
of turbulent motions to accomplish a deeper overall understanding of the asymptotic
turbulence structure. The asymptotic similarity laws for the Reynolds shear stress 〈u′v′〉+,
turbulence production P+, and turbulent viscosity ν+

t reported here have an interesting
property: these turbulence properties appear as products of functions that scale either with
S+
1 + S+

2 or with y. A reasonable concept, which is relatively close to Townsend’s ideas of
different turbulence components [1,22,40–43,49–53] (see below), is to relate a scaling in
S+
1 + S+

2 to local turbulence (small-scale eddies close to the wall), and a scaling in y to
non-local turbulence (large-scale motions extending through all the flow field, they are
produced by energetic processes remote from the wall, they scale by involving boundary
information). The fact that the asymptotic turbulence similarity laws appear as products
of S+

1 + S+
2 and y means that there is a zero interaction between local and non-local tur-

bulence: y scalings do not affect S+
1 + S+

2 scalings and vice versa. In particular, the effect of
non-local turbulence extends throughout the whole flow field, but it does not affect local
turbulence.

It is of interest to compare this viewwithTownsend’s idea of different turbulence compo-
nents. Townsend’s notion can be described as follows [22,40–43,49]. There are two sorts of
turbulence in the innerwall region: active and inactive turbulence, and they do not interact.
Active turbulence is assumed to contribute all of the Reynolds shear stress 〈u′v′〉+. Inactive
turbulence is seen as large-scale motion acting in planes parallel to the wall. It contributes
to 〈u′u′〉+ and 〈w′w′〉+, but not to 〈v′v′〉+ and 〈u′v′〉+ [49]. Nevertheless, this hypothesis
was found to disagree with observations [22,43].

The results reported here show that the Reynolds shear stress is not the result of one
sort of turbulent motion: it is the result of two sorts of turbulent motions. In particular, the
asymptotic Reynolds shear stress −〈u′v′〉+∞ = M(1 − S+

1 − S+
2 ) is affected by both local

and non-local turbulence: it is produced by local turbulence (1 − S+
1 − S+

2 ) and decreased
by non-local turbulence (via M). Based on the fact that the Reynolds shear stress is pro-
duced by local turbulence, we may consider local turbulence as active turbulence. To avoid
confusion with Townsend’s concept of inactive turbulence, non-local turbulence may be
considered then as passive turbulence (with the understanding that it affects −〈u′v′〉+∞,
but it does not generate it).
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5.3. Asymptotic flow structure

The idea of local and non-local turbulence components and their zero interaction pre-
sented here is helpful for the better understanding of the overall asymptotic flow structure,
as described in the following three paragraphs.

First, if there is no interaction between local and non-local turbulence, it is plausible to
find an asymptotic local equilibrium between the production and dissipation of turbulent
kinetic energy (turbulent kinetic energy is dissipated close to where it is produced), as indi-
cated by the findings reported in Section 5.1. If production and dissipation of turbulence
would not balance each other locally, there would be spatial energy transport that interferes
with non-local turbulence. Therefore, local turbulence would affect non-local turbulence
in this case, which contradicts to the zero interaction of local and non-local turbulence
reported here.

Second, if there is no interaction between local and non-local turbulence, it is also
plausible that streamwise and wall-normal turbulent motions approach an asymptotic
equilibrium state of interaction, as indicated by the discussion in Section 5.1. If streamwise
and wall-normal turbulent motions would be asymptotically decoupled [23,24], it would
be impossible to observe an asymptotic local equilibrium of the production and dissipation
of turbulent kinetic energy (because there is no production).

Third, if there is no interaction between local and non-local turbulence, it is a require-
ment to find the same inner-scaled flow statistics in internal flows and boundary layers
at the same Reynolds number. This is indeed the case, as it was reported recently [25]. In
particular, it was found that flow effects modify non-local turbulence only via absolutely
required geometry and domain effects [25]. In other words, non-local turbulence can be
seen as a passive set-up determined by the domain and boundary conditions. Hence, the
findings reported here and in Ref. [25] combine to one coherent picture of the asymptotic
turbulence structure of the three flows considered.

6. Concluding remarks

The understanding of the asymptotic structure of wall-bounded turbulent flows at extreme
Reτ is an important research topic as discussed in Section 1. To further advance our
understanding, this paper was focused on three problems: P1 (the structure of asymp-
totic laws for the mean velocity and related turbulence statistics), P2 (the convergence
of mean flow and turbulence statistics towards the asymptotic laws), and P3 (the physi-
cal flow organization at extreme Reτ ). The technical approach to address these questions
was (i) to extend a recent identification of the mean flow physics of three canonical wall-
bounded turbulent flows (channel flow, pipe flow, and the TBL) by corresponding results
for the Reynolds shear stress (which allows conclusions for the turbulent kinetic energy
production, turbulent viscosity, production-to-dissipation ratio of turbulent kinetic energy
and the correlation of streamwise and wall-normal turbulent velocities), and (ii) to analyze
asymptotic flow statistics on this basis. It is relevant to note that the analysis of Reynolds
shear stress features was performed in the same spirit as analyzing the mean flow in Ref.
[25]: it was demonstrated that the analytical models obtained satisfy criteria for veritable
physics (see Section 2.2). Detailed answers to the problems P1, P2, and P3 were provided
in Sects. 3,4, and 5, respectively. The main findings are summarized in the following.
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With respect to P1, the main novelty presented here is the derivation of analytical
asymptotic relationships formean flow and related turbulence variables. The following was
concluded.

(1) There is clear evidence for the validity of the velocity log-law combined with a
constant, universal von Kármán constant κ = 0.40 for the three flows considered.

(2) With respect to the skin friction coefficient variation, there is no support for a
power law variation [54,55]. Instead, the skin friction coefficient follows asymp-
totically an inverse quadratic logarithmic function (which is an accurate model for
Reτ ≥ 500) in line with the friction law.

(3) Asymptotic, self-similar profiles (products of functions of y+ and y) were obtained
for 〈u′v′〉+, P+, and ν+

t (which is an essential ingredient of turbulence models).
They may be considered as a reflection of the scale separation, equivalent to the
velocity log-law.

With respect to P2, the main novelty presented here is the derivation of the analytical
convergence behavior of mean flow and related turbulence variables. The following was
concluded.

(1) The log-law establishment coincides with the establishment of asymptotic tur-
bulence profiles. This supports the view that the establishment of self-similar,
scale-separation laws for the turbulence is the condition for the development of
a strict logarithmic velocity profile.

(2) With respect to channel flow, there is a critical Reτ = 20, 000 required to observe a
strict log-law. For pipe flow and the TBL, we find critical Reτ = 63, 000 and Reτ =
80, 000, respectively. The relationship to alternative log-law bounds was discussed.

(3) A relevant observation is the fact that the self-similar turbulence profiles provide
already very good approximations for Reτ ≥ 500.

With respect to P3, the main novelty presented here is the explanation of basic asymp-
totic flow organization features based on the observed zero interaction of local and
non-local turbulence. In particular, the following was concluded.

(1) Asymptotic similarity laws for 〈u′v′〉+, P+, and ν+
t reflect a zero interaction

between local and non-local turbulence: they coexist without affecting each other.
The effect of non-local turbulence extends throughout the whole flow field, but it
does not affect local turbulence.

(2) An asymptotic local equilibrium of the production and dissipation of turbulent
kinetic energy and an asymptotic equilibrium state of interaction of streamwise
and wall-normal turbulent motions represent reflections of the missing interaction
of local and non-local turbulence.

(3) The findings obtained are consistent with other conclusions reported recently [25]:
a zero interaction of local and non-local turbulence is a requirement to find at
the same Reτ the same inner-scaled flow statistics in internal flows and boundary
layers.
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