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Improved understanding of optimal design conditions for a variety of turbulent flow 
problems would offer tremendous advantages: e.g., we would be able to optimally place 
wind turbines in wind farms and to reduce the cost of aircraft flight by optimal aircraft 
designs. The only way that enables a comprehensive assessment of such turbulent flow 
scenarios is the simulation of such turbulent flows based on numerically solving rather 
complicated partial differential equations (PDE). The requirement for applying this 
approach is knowledge of appropriate PDE which can be used to properly determine the 
spatial distribution and the development of turbulent flows.  
 
The search for such appropriate PDE is a slow and resource-intensive process which 
continues now for more than fifty years. There are two mainstream approaches which are 
applied over a long time. One approach is based on the idea to explain the mechanism of 
turbulent flows on the basis of model assumptions. The other approach is based on the 
idea to basically resolve the flow, this means to calculate all flow details by using a 
minimum of model assumptions. The first approach often fails because the model 
assumptions applied are invalid. The second approach is often inapplicable to flows seen 
in reality because of unaffordable computational costs of such detailed calculations. 
Ways to overcome the problems of mainstream approaches are under investigation for 
decades. The usual approach is to combine both types of PDE. Because of the very 
different nature of equation types, the disadvantage of this approach is the uncontrolled 
appearance of both sorts of solutions of equations. The practical consequence is the 
current inability to perform reliable predictions of many realistic turbulent flow scenarios.  
 
Based on previous theoretical work [1-10], our project provided a solution for the core 
problem of existing problems: the mathematically correct design of PDE which include 
both model and flow resolution components [11-45]. The novelty of this approach is the 
assessment of flow resolution implied by mathematics and set up of the communication 
and response mechanism of the components involved. Applications to challenging flow 
configurations provide convincing support for the functioning of simulation methods 
designed in this way. In addition, we solved another relevant mathematical problem 
arising from the need to involve adjustable model parameters in simulation methods, 
which is a known source of significant inaccuracy. Implied by exact mathematics we 
designed a dynamic calculation of such model parameters on the fly (i.e. during the 
simulation), which enables an optimal adjustment of simulation methods to conditions 
considered. Flow applications reveal the benefits of this dynamic modeling approach.  



The practical advantage of our mathematics-based developments is the reliable capability 
to predict turbulent flow regimes that cannot be studied in terms of other analysis 
methods because corresponding applicability conditions cannot be satisfied. We informed 
the community about this capability to advance our understanding of the structure of 
turbulent flows and to provide guidelines for the evaluation of turbulence models [26-45]. 
We implemented our novel computational methods in OpenFOAM, a simulation code 
which is available to the public. The same applies to the implementation of our dynamic 
model. A relevant fact in this regard is also that the novel simulation methods can be 
relatively easily implemented by modifications of a variety of currently applied methods 
for the simulation of turbulent flows. The corresponding requirements are described in a 
several journal papers and specifically brought to the attention of several research groups 
by a variety of international conference presentations and research talks.   
 
The solution approach applied is presented so far in regard to PDE usually applied to 
address relatively small-scale engineering problems. However, there is technically no 
difficulty to use the same approach to overcome corresponding problems that appear in 
other areas. This concerns, for example, the combination of very large-scale atmospheric 
boundary layer (ABL) simulations (which focus on the modeling of processes) with 
relative small-scale ABL simulations (which focus on the resolution of processes, for 
example the details of flow around wind turbines). This means, our approach provides the 
basis for a solution of the Terra Incognita problem raised by Wyngaard, an atmospheric 
science problem that is unsolved over decades.  
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