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ABSTRACT
A highly attractive idea to overcome shortcomings of both Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation
(LES) equations is the implementation of LES capability in RANS models. However, this approach faces questions regarding (i) the
measurement of resolved motion and equivalence of various equations having the same resolution, (ii) the continuous variation
of resolved and modeled motion under grid variations, and (iii) the explanation of how resolved motion and scaling variables in
LES depend on the grid. Corresponding analytical results (addressing the resolution measurement, equivalence of equations, and
resolution control) are reported, and grid effects (including the scaling of computational cost) are discussed.
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The need for a significant cost reduction of large eddy
simulation (LES), in particular for wall-bounded turbulent
flows, initiated a relevant research topic that is under inves-
tigation over decades:1–12 the hybridization of Reynolds-
averaged Navier-Stokes (RANS) and LES. An ideal expectation
for the performance of hybrid RANS-LES methods is their
optimal performance on each affordable grid up to high
Reynolds numbers: depending on the resolution supported
by the grid, the amount of modeled motion smoothly
increases if the grid becomes coarser. In this regard, a
major issue of popular hybrid RANS-LES methods is the bal-
ance of modeled and resolved turbulent motions: modeled
and resolved motions cannot be considered to be indepen-
dent; the modeled motion has to respond to the amount
of resolved motion to ensure an appropriate total motion
(given by the sum of resolved and modeled motions). The
latter issue is not just an academic problem. For example,
it is known to be the reason for an incorrect reflection
of wall physics (the logarithmic law of the wall cannot be
obtained13).

From a more general viewpoint, there are several ques-
tions with respect to the mathematical foundations of hybrid
RANS-LES and LES methods:

Q1. Is there a mathematical explanation of (i) how the
amount of resolved and modeled motion has to be
measured and (ii) how various turbulence models can
produce the same resolution?

Q2. Is there mathematical proof that many RANS equations
(i) can produce resolved motions so that (ii) modeled
motions are continuously in balance with the actual
resolved motion?

Q3. Which ideas of how the grid (the filter width ∆) affects
(i) the resolution and (ii) LES scale variables (the LES
length scale L) are supported by mathematical-physical
principles?

Regarding Q1, a very important and non-trivial ques-
tion is how the resolution of LES can be evaluated,14 and
hybrid RANS-LES models need to get information about the
actual resolution to enable an appropriate generation of
modeled motion. A closely related question is how different
turbulence models can be designed that have the same res-
olution. Regarding Q2, the view that RANS equations can
produce resolved motions under certain conditions is sup-
ported by both applications and theoretical arguments.15
By focusing on criteria for the equivalence of various hybrid
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methods, Friess et al.10 have recently presented a technique
to analyze relations between model coefficients of RANS
equations and variables that reflect the amount of modeled
motion [like the modeled-to-total turbulent kinetic energy
ratio k+ = k/ktot, where ktot = k + kres is the sum of modeled
(k) and resolved (kres) energies]. However, these relations were
presented under rather restrictive conditions (see below), and
they change depending on the assumptions made. So there is
certainly the question of what proves, in general, the ability
of RANS equations to produce resolved motions. More specif-
ically, a hybrid model has to respond to the actual resolution
with the proper amount of modeled motion to have a balanced
total motion—the question is how this can be accomplished.
Regarding Q3, a valid question is about how the distribution
of LES and RANS modes changes with the grid. One version
of asking this is to consider how k+ depends on ∆+ = ∆/Ltot.
Here, Ltot = L + Lres is the total (RANS) length scale consisting
of modeled and resolved contributions, L and Lres, respectively
(similar to ktot = k + kres). A different version of this question is
to ask how the corresponding length scale ratio L+ = L/Ltot
depends on ∆+. This question is equivalent to the question of
how the grid affects variables in LES that provide scale infor-
mation, like L. In particular, there is the question of how L
scales with ∆ if ∆ is not small.

Let us illustrate the specific problem considered for
incompressible flow in terms of the popular k–ε model for
the turbulent kinetic energy k and its dissipation rate ε (other
turbulence models will be considered below),

Dk
Dt
= P − ε + Dk,

Dε
Dt
= Cε1

ε2

k

(P
ε
− α∗
)

+ Dε. (1)

Here, D/Dt = ∂/∂t + Uk∂/∂xk refers to the Lagrangian time
derivative, which involves the component Uk of the mean
velocity. The sum convention is applied throughout this paper,
t is time, and xk is the kth space coordinate. No explicit expres-
sion will be used below for the production of turbulent kinetic
energy P. A usual parametrization is given by P = νtS2. Here,
S = (2SikSki)1/2 is the characteristic shear rate which involves
the rate of strain Sik = (∂Ui/∂xk + ∂Uk/∂xi)/2. The turbulent
viscosity is given by νt = Cµk2/ε , where Cµ is a constant. In
addition, we have α∗ = α with α = Cε2/Cε1 . Cε1 and Cε2 are con-
stants having standard values Cε1 = 1.44 and Cε2 = 1.92. The
turbulent transport terms are given by

Dk =
∂

∂xj

[(
ν +

νt
σk

)
∂k
∂xj

]
, Dε =

∂

∂xj

[(
ν +

νt
σε

)
∂ε

∂xj

]
. (2)

Here, ν refers to the constant molecular viscosity, and σk and
σε are constants.

The inclusion of resolving motions in the RANS equa-
tions (1) is possible by considering a variable α∗ instead of
the constant α. The problem is to determine α∗ such that a
desired resolution can be realized. The particular challenge is
to ensure the functioning of this mechanism for varying res-
olution levels. Popular solutions to this problem are offered
by partially averaged Navier-Stokes (PANS)6 and partially
integrated transport modeling (PITM):4,5,12 both approaches
assume α∗ = 1 + R(α − 1), where R = k+.

Mathematically, the appropriate way to address the cal-
culation of α∗ is to consider variations of model parame-
ters and implied variations of model variables: the question
is which model parameters satisfy variation equations implied
by turbulence models. Technical material in this regard is pre-
sented in the first four paragraphs of the last six paragraphs
of this letter (beginning with Sections IA-ID, respectively). The
analysis shown in Section IA leads to the conclusions that
R = L2

+ in α∗ = 1 + R(α − 1), which is clearly different from
R = k+ applied in PANS-PITM approaches4–6,12 (see the corre-
sponding discussion below). The analysis in Section IB shows
that there exists a corresponding detached eddy simulation
(DES) k–ε model, which is (resolution-wise) equivalent to the
PANS-PITM-type k–ε model equations (1). The analysis shown
in Section IC leads to the conclusion that there exists a PANS-
PITM-type k–ω model, which is (resolution-wise) equivalent
to the PANS-PITM-type k–ε model (1). The analysis in Section
ID shows that there exists a corresponding DES k–ω model,
which is (resolution-wise) equivalent to Eq. (1). Within the
framework considered [the equations considered and condi-
tion of Friess et al.10 that the energy partition variation (δk/k,
δε/ε ) over the domain is uniform16], the results reported in
Sections IA-ID are exact analytical implications. It is worth
noting that the analysis of Friess et al.10 provides the tech-
nical framework for obtaining the results shown in Sections
IA-ID, but the latter results were not reported so far (Friess
et al.10 focused on another question, the equivalence of hybrid
methods: see the discussion of Q2 above).

Let us use the Sections IA-ID results to present observa-
tions regarding Q1 considered above. The characterization of
the degree of flow resolution is very relevant and rather dif-
ficult. Current concepts for the evaluation of the resolution
of simulations are based on comparisons of the suitability of
parameters that appear to be appropriate.14 No theory was
presented so far providing guidance regarding an optimal res-
olution measure. A relevant result of the analysis presented
here is the mathematical identification of L2

+ as a resolution
measure regarding the models considered. Without involving
Eq. (16), L2

+ was shown to provide information about the grid-
induced resolution to the model equations and to control the
model’s response to the amount of actual resolution. It is of
interest that the use of L+ as a resolution measure agrees with
Davidson’s analysis14 of resolution measures, showing that the
consideration of velocity correlation functions (the resolu-
tion of integral length scales) represents the most promising
approach. L+ (the length scale ratio of modeled LES and RANS
motions) may be considered as a Knudsen number: it sepa-
rates LES and RANS regimes similar to the Knudsen number
used in fluid dynamics to separate statistical mechanics and
continuum mechanics regimes. With respect to the hybridiza-
tion of RANS and LES, it needs a reduction of scale variables
(length or time scales) to enable resolving simulations. This
can be performed in a variety of ways, e.g., by replacing the
dissipation time τ = k/ε in the turbulent viscosity by τk+.15
In this regard, the advantage of identifying L2

+ as the con-
trol parameter is the exclusion of empirical solutions to this
problem. The use of L2

+ includes ε+ = ε/ε tot variations: there
is no need to disregard them as often performed in PANS
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modeling or to include such effects via approximations.10 A
remarkable finding is that L2

+ was identified as a resolution
measure for several (k–ε and k–ω) turbulence models and
for different (PANS-PITM-type and DES-type) hybridization
schemes. In addition to providing support for the suitability of
considering L2

+, this means that there are equivalent formula-
tions of several turbulence models that can produce the same
resolution.

Next, let us use the Sections IA-ID results to present
observations regarding Q2 considered above. The results pre-
sented above prove explicitly, first, that many RANS equations
can produce resolved motions (i.e., L+ ≤ 1) and, second (via
the fact that variation equations are satisfied), that modeled
and resolved motions can be kept in balance. The essential
requirement for both properties is that model coefficients
are chosen in consistency with corresponding variation equa-
tions. Compared to α∗ = 1 + L2

+(α − 1) used in the k–ε model
presented here, what are actually the consequences of using
α∗ = 1 + k+(α − 1) applied in PANS-PITM methods? The com-
bination of α∗ = 1 + k+(α − 1) with the variation equation (6)
implies

δk
k

[
Nε − γ(Nk − 1 −Nε )

]
=
δε

ε

[
2 + γ(1 −Nkε )

]
, (3)

where γ = Dk/[(α − 1)k+ε ]. For independent variations, the
only way to satisfy this equation is to neglect ε variations
and, consequently, to set Nε = 0. Then, the first term requires
γ = 0, which means that Dk = 0. Thus, PANS-PITM methods
are (in addition to the neglect of ε variations) equivalent to
the consideration of homogeneous turbulence. With respect
to the k–ω model, we find a corresponding result as the con-
sequence of the PANS-PITM setting β∗ = 1 + k+(β − 1). As a
consequence of PANS-PITM concepts, hybrid models involv-
ing ε+ , 1 effects and variations of Cµ in the turbulent viscosity
need to account for these effects approximately, and they are
different depending on the effects considered.10 On the other
hand, there is no need for considering such different models
by using the concepts presented here.

Technical material about the grid influence on the resolu-
tion, which will be used in the following paragraph to address
Q3 considered above, is presented in Section II (the para-
graph before the last paragraph of this letter). The relation-
ship L+ = ∆C+/(1 + ∆3

C+)1/3 between L+ and ∆+ considered in
Section II was already presented before based on spectral
arguments.12,17 However, given its relevance, the purpose of
Section II is to provide independent (probabilistic) evidence for
the validity of L+ = ∆C+/(1+∆3

C+)1/3 for inhomogeneous turbulent
flows.

Let us use now the Section II results to present obser-
vations regarding Q3 considered above. The relationship
L+ = ∆C+/(1 + ∆3

C+)1/3, denoted as dispersion relation below,
represents a simple interpolation between limits. Evidence for
its suitability was provided here by taking reference to prob-
abilistic arguments, in particular, the realizability and statis-
tically most-likely (SML) structure of the related probability
density function (PDF) f = dL2

+/d∆C+. The dispersion relation
enables a better insight into the differences between PANS-
PITM approaches (using k+ to reflect the resolution, we have

k+ = L2/3
+ if ε+ = 1 is assumed) and the methods described

here (using L2
+). The difference between L2/3

+ and L2
+ is illus-

trated in Fig. 1. It may be seen that the use of L2/3
+ significantly

overestimates the amount of modeled motion. To accomplish
the same resolution, a much finer grid has to be applied in
PANS-PITM methods. This can be expressed by the equality
condition L2/3

+ (∆C+/F) = L2
+(∆C+), where F is the grid refine-

ment factor needed in PANS-PITM. By involving the disper-
sion relation, the evaluation of the equality condition provides
F = [1 + 3∆3

C+(1 + ∆3
C+)]1/3/∆2

C+. By using the dispersion relation,
F can be also written F = κ1/3/L2

+, where κ = 1 + L3
+(1 + L3

+).
Here, 1 ≤ κ1/3 ≤ 31/3 = 1.44, i.e., F scales first of all with L−2

+ .
F becomes huge for small L+, i.e., PANS-PITM approaches pro-
duce in the high-cost LES regime huge additional computa-
tional cost. Another viewpoint implies the same. A reasonable
definition of computational cost reads n+ = 1 + N+: N+ is the
number of grid points in simulations and 1 + N+ normalizes n+
such that n+ = 1 for RANS. By using Eq. (16), we find n+ = L−3

+ . On
the other hand, PANS-PITM approaches that need a finer grid
(∆+/F instead of ∆+ in n+ = 1+∆−3

C+) imply n+ = L−9
+ . Hence, PANS-

PITM methods have a scaling that is six orders of magnitude
higher than the scaling of methods presented here.

In summary, this paper reports analytical results regard-
ing the measurement of resolution, equivalence of hybrid
methods, and resolution control in hybrid methods. These
results are exact within the framework considered [the equa-
tions considered and condition of Friess et al.10 that the
energy partition variation (δk/k, δε/ε ) over the domain is
uniform16]. In particular, the following answers to the ques-
tions Q1-Q3 considered above were obtained. The question of
how the amount of resolved (modeled) motion has to be mea-
sured is debated over decades.14 Here, a mathematical expla-
nation was provided showing that the amount of modeled
motion is given by L+. This conclusion was obtained for several
turbulence models, meaning also that various turbulence
models can produce the same resolution. Strict explanations

FIG. 1. L2/3
+ , L+, and L2

+ determined by Eq. (16). The dashed line shows ∆C+. The
inset shows the PDF f = dL2

+/d∆C+.
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of why RANS equations can be resolving and how modeled and
resolved motions can be kept in balance were not presented
so far. Evidence for that was provided here subject to the
condition that model coefficients can correctly satisfy varia-
tion equations implied by the RANS equations. Various turbu-
lence models can act equivalently if their model coefficients
are chosen consistently. Both PANS and PITM approaches are
known to produce imbalances in this regard, e.g., regarding
the imposed and the actual resolution.16 The reason for such
imbalances was explained by the fact that PANS-PITM con-
cepts apply a relationship between model coefficients and res-
olution parameters that applies to homogeneous flows and
needs the neglect of ε variations. So far, there is no agree-
ment about how the grid affects the resolution in hybrid
methods and scale variables in LES like L.12,18–20 The proba-
bilistic interpretation presented here supports the validity of
L+ = ∆C+/(1 + ∆3

C+)1/3. On this basis, it was shown that the use of
PITM-PANS concepts has a computational cost scaling with L+
that is six orders of magnitude higher (n+ = L−9

+ ) than the cost
scaling of methods presented here (n+ = L−3

+ ), which matters,
in particular, in the high-cost LES regime. Regarding the scal-
ing of LES, L = C+∆/(1 + ∆3

C+)1/3 explains the scaling of the LES
length scale L with ∆.

Section IA. We apply variational analysis to the k–ε model
equations (1) to find out which α∗ is needed to enable a
desired resolution. To prepare the following developments,
we consider the variations (denoted by δ) of diffusion terms.
By following, basically, the analysis of Friess et al.,10 we find
δDk/Dk = α

3
k/αε − 1 and δDε /Dε = α2

k − 1. The relevant condi-
tion applied here is that variations of αk = 1 + δk/k and αε = 1
+ δε/ε in space can be neglected, which is equivalent to look-
ing for model coefficient variations that produce an uniform
variation of the energy partition over the domain: see the jus-
tification provided by Friess et al.10 and Manceau et al.16 In the
first order of approximation, the relations δDk/Dk = α

3
k/αε − 1

and δDε /Dε = α2
k − 1 read

δDk

Dk
= Nk

δk
k
−Nkε

δε

ε
,

δDε
Dε
= Nε

δk
k

, (4)

where Nk = 3, Nkε = 1, and Nε = 2. The noticeable difference
to the corresponding expressions obtained by Friess et al.10 is
the inclusion of ε variations. By following the analysis of Friess
et al.,10 we neglect (with respect to the variational analysis
performed here) the left-hand side (LHS) of both equations in
the k–ε model (1), which is equivalent to assuming that both
k and ε are in equilibrium along mean streamlines. By using
P = ε − Dk in the ε equation, we obtain

0 = Cε1

ε2

k

(
1 −

Dk

ε
− α∗
)

+ Dε . (5)

The function α∗ can be found by considering the variation of
Eq. (5),

δα∗ = (α∗ − 1)
[
(1 + Nε )

δk
k
− 2

δε

ε

]
− Tα , (6)

where Tα = ε−1Dk[(1 − Nkε )δε/ε + (Nk − 1 − Nε )δk/k]. Here,
Eq. (5) was used to replace Dε . The use of Nk = 3, Nkε = 1, and

Nε = 2 finally implies

δα∗

α∗ − 1
= 3

δk
k
− 2

δε

ε
= 2

δL
L

, (7)

where L = k3/2/ε is the turbulence model length scale. The
integration of Eq. (7) from the RANS state to a state with
a certain level of resolved motion results in ∫ α

∗

α dx/(x − 1)
= 2 ∫ LLtot dy/y. The evaluation of the latter expression implies

α∗ = 1 + R(α − 1), (8)

where R = L2
+ .

Section IB. It is of interest to look at other versions of
setting up hybrid models within the k–ε model framework.
According to the DES concept,10,12 we may consider

Dk
Dt
= P − ψαε + Dk,

Dε
Dt
= Cε1

ε2

k

(P
ε
− α
)

+ Dε. (9)

Variations of resolved and modeled motions can be included
here via the function ψα , which has to be determined. In cor-
respondence to the analysis presented before, we neglect the
LHS of both equations and use P = ψαε − Dk in the ε equation
so that 0 = Cε1k

−1ε2(ψα − Dk/ε − α) + Dε . The comparison with
Eq. (5) reveals the equivalence of models, provided we have

α∗ = 1 + α − ψα . (10)

Section IC. It is also of interest to look at corresponding
implications for other two-equation turbulence models, like
the k–ω model,

Dk
Dt
= P − ε + Dk,

Dω
Dt
= Cω1ω

2
(P
ε
− β∗
)

+ Dω , (11)

which involvesω = ε/k. Here, we have P = νtS2 with νt =Cµk/ω
and β∗ = β with β = Cω2/(CkCω1 ). The diffusion term in
the ω equation reads Dω = ∂[(ν + νt/σω )∂ω/∂xj]/∂xj. The
constants involved have the values Cω 1 = 0.49, Cω2 = 0.072,
Ck = 0.09, Cω = 1.1, σω = 1.8. Usually, a cross diffusion term
Dωc = Cωk−1(ν + νt)[∂k/∂xj][∂ω/∂xj] is added to Eq. (11). How-
ever, it does only affect the model behavior near boundaries (it
acts like a damping function). Thus, it will be neglected for the
following analysis. The hybridization of the RANS equations (11)
requires to determine a variable β∗ to enable a certain resolu-
tion. As performed with respect to the k–ε models, we neglect
both LHS’s in Eqs. (11) and use P = ε − Dk in the ω equation to
obtain 0 = Cω1ω

2(1−Dk/ε −β
∗) +Dω . The variational analysis of

this equation can be performed by following the correspond-
ing analysis of k–ε models. We find δDω/Dω = αk − 1. In the
first order of approximation, we obtain δDω/Dω = Nωδk/k,
where Nω = 1. On this basis, we find

δβ∗ = (β∗ − 1)
[
(2 + Nω )

δk
k
− 2

δε

ε

]
− Tβ , (12)

where Tβ = ε−1Dk[(1 − Nkε )δε/ε + (Nk − 2 − Nω )δk/k]. Com-
bined with Nk = 3, Nkε = 1, Nω = 1, and R = L2

+, the latter relation
implies

β∗ = 1 + R(β − 1). (13)
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Section ID. In correspondence to the DES version of the
k–ε model, we may consider

Dk
Dt
= P − ψβε + Dk,

Dω
Dt
= Cω1ω

2
(P
ε
− β
)

+ Dω , (14)

where ψβ needs to be determined. We neglect both LHS’s and
use P = ψβε − Dk in the ω equation to obtain 0 = Cω1ω

2(ψβ
−Dk/ε − β) + Dω . The comparison with the corresponding k–ω
equation 0 = Cω1ω

2(1−Dk/ε − β
∗) +Dω reveals the consistency

of models, provided we have

β∗ = 1 + β − ψβ . (15)

Section II. Let us consider the calculation of L+, which
is needed in the equations presented above. L+ can be pre-
scribed or directly calculated during the simulation. There
are versions of performing this (using relations of L+ to k+,
ε+ = ε/ε tot, and M+, where M+ refers to the modeled-to-
total ratio of the Reynolds stress considered in a coordinate-
invariant manner).20 For example, L+ can be determined via
its relationship to M+ combined with a prescribed value of
M+.20 Nevertheless, there is the question of how L+ is related
to the grid, which is relevant because of both practical and
theoretical reasons. There are questions regarding the setup
of simulations, e.g., what approximately is k+ for a certain grid
and what is the change of the energy ratio if other grids are
used. More importantly, the question of how L+ is related to
∆+ is relevant to the theoretical setup of LES and hybrid meth-
ods. For LES, there is the problem to explain the scaling of the
model length scale L with ∆, see Refs. 15 and 20. With respect
to hybrid RANS-LES, there is the question of how the mode
distribution changes with the grid. A significant number of
relationships between L+ and ∆+ are in use, see the reviews
in Refs. 12, 18, and 19. Only a few suggestions for solving this
problem were presented as being supported by theory.4,5,17
Written in terms of L+, the recent version of this development,
which involves any number p, reads17

L+ = ∆C+/
(
1 + ∆pC+

) 1/p
, (16)

where ∆C+ = C+∆+. In practice, p = 3 is applied.12 The constant
C+ was determined to be C+ = (3CK/2)3/2/π, where Ck refers to
the Kolmogorov constant. Values Ck = (1.3, 1.43, 1.5), e.g., imply
C+ = (0.876, 1.0, 1.074). For sufficiently small ∆+, Eq. (16) implies
L+ = ∆C+ (see Fig. 1 below). The relation L+ = ∆C+ is simply
a consequence of calculating L+ by integration over the Kol-
mogorov spectrum.5 Based on empirical reasoning, the same
expression was suggested by Girimaji and Abdol-Hamid21 with
the noticeable difference that C+ = C−3/4

µ = 6.09. An argu-
ment in favor of C+ ≈ 1 is that this value agrees in the LES
limit very well with usual parametrizations of the dissipation
rate in LES equations: we have ε = k3/2/L = k3/2/[C+∆]. A
rewriting of Eq. (16) reads L−p+ = 1 + ∆−pC+, which is simply an
interpolation between the limits of small and large ∆+ val-
ues (∆C+ and unity). Proof of the validity of Eq. (16) requires
support for the interpolation structure of this equation. The
latter can be obtained in the following way. L2

+, which con-
trols the RANS-LES transition, represents a cumulative dis-
tribution function (CDF) changing from zero to unity. From

a probability perspective, this CDF should be realizable, i.e.,
implied by an existing PDF. In particular, this PDF should have
existing moments, at least a mean and variance (the existence
of finite moments of such a PDF is not ensured in general:
for example, the PDF implied by an earlier L2

+ model4 does
not have existing moments). The PDF considered is given by
f(t) = dL2

+/d∆C+ = 2t1/p(1 − t)1+1/p (see the inset in Fig. 1). Here,
0 ≤ t ≤ 1 is defined via 1 − t = (1 + ∆pC+)−1. For p > 1, the PDF
f(t[∆C+]) has an existing mean, mf = 2p−1

∫
1

0[t/(1 − t)]1/pt2/p−1dt,
and for p > 2, it has an existing variance, σ2

f = 2p−1
∫

1
0[t/(1

− t)]2/pt2/p−1dt −m2
f . The evaluation of mf and σ2

f results in mf

= 2p−1B(3/p, 1 − 1/p) and σ2
f = 2p−1B(4/p, 1 − 2/p) −m2

f , respec-

tively. B(A,B) = ∫ 1
0 tA−1(1−t)B−1dt is the beta function: see Ref. 22.

A further analysis reveals that this PDF has theoretical sup-
port; it represents a SML PDF that maximizes the correspond-
ing entropy on the probability space considered.23 The setting
p = 3 (which implies a PDF mean mf = 1) can be justified as
follows. According to Eq. (16), the modeled volume ratio of tur-
bulence elements reads L3

+ = 1/(1 + Np/3
+ )3/p, where N+ = ∆

−3
C+

characterizes the number of grid points in three-dimensional
simulations (∆+ = ∆/Ltot). This implies dL3

+/dN+ = −N
p/3−1
+ L3+p

+ .
To exclude a divergence of dL3

+/dN+, e.g., for large N+, we have
to require that dL3

+/dN+ is independent of N+. The latter is the
case for p = 3.
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